
Fondazione Gran Sasso Tech

WP2: Realizzazione Infrastruttura Data-Lake MAPS

Progettazione Tecnica, Solution Design Cloud, Specifiche Hosting

Data: 2026-02-20

Autore: Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

1 Contesto e Requisiti

1.1 1.1 Introduzione al Progetto MAPS
Il progetto MAPS (Multidimensional Area Place-based System) si inserisce nel contesto dell’analisi
territoriale italiana con l’obiettivo di definire Sistemi Locali Omogenei (SLO) basati su pattern
di mobilità quotidiana multidimensionale.

1.1.1 Obiettivi del Progetto

1. Mappatura sistemi locali: Identificazione di aree funzionali basate su accessibilità ai servizi
2. Individuazione aree svantaggiate: Classificazione territori in base a indicatori di svantag-

gio
3. Analisi investimenti pubblici: Integrazione dati Open Coesione, PNRR, fondi regionali
4. Valutazione impatto: Simulazione scenari “what-if” per allocazione investimenti

1.1.2 Approccio Innovativo

A differenza dei tradizionali Sistemi Locali del Lavoro (SLL) ISTAT, che si basano principal-
mente sul pendolarismo lavorativo, MAPS adotta un approccio multidimensionale che considera:

• Lavoro (32% degli spostamenti)
• Gestione familiare (37.2% degli spostamenti)
• Tempo libero (26.2% degli spostamenti)
• Istruzione (4.6% degli spostamenti)
• Accesso a servizi pubblici essenziali

1.2 1.2 Requisiti del Data Lake

1.2.1 Requisiti Funzionali

1.2.1.1 RF1: Ingestion Dati Eterogenei Il Data Lake deve supportare l’acquisizione di ~200
dataset da fonti eterogenee: - ISTAT: Popolazione, confini amministrativi, pendolarismo - EU-
ROSTAT: Indicatori socio-economici europei - Ministeri: Istruzione, Salute, Lavoro - GTFS:
Trasporto pubblico - OpenStreetMap: Infrastrutture territoriali - Open Coesione: Progetti
finanziati - PNRR: Investimenti Recovery Fund

1.2.1.2 RF2: Gestione Serie Storiche

• Periodo: 2010-2025 (15 anni)
• Granularità: Comunale (~8.000 comuni italiani)
• Discontinuità: Gap temporali COVID-19 (2020-2021)
• Fusioni comunali: Gestione tramite lookup storico

1.2.1.3 RF3: Standardizzazione Dati

• Normalizzazione codici ISTAT
• Uniformazione coordinate spaziali (EPSG:32632)
• Gestione valori mancanti vs nulli semantici
• Riconciliazione fusioni/separazioni comunali

Pagina 2 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

1.2.1.4 RF4: Pattern Medallion Implementazione del pattern di data lake a 3 livelli: -
Bronze: Dati grezzi immutabili - Silver: Dati standardizzati (schema EAV) - Gold: Data mart
analitici business-ready

1.2.2 Requisiti Non Funzionali

1.2.2.1 RNF1: Completeness

• Target: Copertura >=95% dei comuni italiani per ogni dataset
• Metrica: % comuni con dati completi vs totale

1.2.2.2 RNF2: Accuracy

• Target: >=99.9% record con codice ISTAT valido
• Validazione: Confronto con reference dataset (confini ISTAT ufficiali)

1.2.2.3 RNF3: Timeliness

• Ingestion: Dataset mensili processati entro 5 giorni dall’availability
• Latenza ETL: <24h per pipeline prioritarie

1.2.2.4 RNF4: Lineage

• Tracciabilità: Completa per ogni record (fonte → Bronze → Silver → Gold)
• Versionamento: Tracking modifiche su fonti dati

1.2.2.5 RNF5: Scalabilità

• Volume: Supporto fino a 1TB dati nel triennio
• Throughput: >=100 record/s per pipeline ETL

1.2.2.6 RNF6: Governance

• Catalogazione: Metadata per tutti i dataset
• Quality monitoring: Dashboard data quality real-time
• Audit: Log completo operazioni su dati sensibili

1.3 1.3 Dati Critici per MVP (Fase 1a)
Per la fase iniziale del progetto (Mesi 1-4), si identificano 5 dataset critici:

Dataset Fonte Formato Frequenza Priorità
Confini comunali
+ metadata

ISTAT Shapefile/JSON Annuale Alta

Popolazione
residente

ISTAT CSV Annuale Alta

Matrici
pendolarismo

ISTAT CSV Decennale Alta

Rete trasporto
pubblico

GTFS ZIP Mensile Media

Pagina 3 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Dataset Fonte Formato Frequenza Priorità
Strutture
sanitarie

Min. Salute Excel Annuale Media

1.4 1.4 Vincoli Architetturali

1.4.1 Vincolo V1: Self-Hosted Open Source

• Rationale: Indipendenza da vendor, costi prevedibili
• Stack tecnologico: PostgreSQL, PostGIS, Prefect, OpenMetadata, DuckDB
• Esclusioni: BigQuery, Azure, AWS managed services

1.4.2 Vincolo V2: Adeguatezza di Scala

• Volumetria: ~10� righe x ~10³ colonne (ordine di grandezza DEPP)
• Giustificazione: BigQuery sarebbe overkill per questa scala

1.4.3 Vincolo V3: Standard Territoriali

• PostGIS: Industry standard per dati spaziali
• EPSG:32632: Sistema di riferimento WGS84 / UTM zone 32N

1.4.4 Vincolo V4: Compliance FAIR

Dataset rilasciati devono essere: - Findable: Catalogati con metadata strutturati - Accessible:
Licenze open (CC-BY, CC0) - Interoperable: Formati standard (GeoJSON, GeoParquet, CSV) -
Reusable: DOI per citabilità scientifica

1.5 1.5 Sfide Specifiche

1.5.1 Sfida S1: Assenza Geolocalizzazione Puntuale

La maggior parte dei servizi (scuole, ospedali, uffici postali) non ha coordinate precise: - Approccio:
Presenza/assenza a livello comunale - Implicazione: Isocrone municipality-to-municipality

1.5.2 Sfida S2: Evoluzione Confini Amministrativi

Nel periodo 2010-2025 ci sono state ~100 fusioni/separazioni comunali: - Soluzione: Lookup storico
con validità temporale (SCD Type 2) - Schema Silver: Colonne valid_from, valid_to

1.5.3 Sfida S3: Gap Temporali COVID

Dati 2020-2021 hanno discontinuità metodologiche: - Gestione: Flag covid_affected per dataset
impattati - Analisi: Tecniche di imputation o esclusione periodi

1.5.4 Sfida S4: Eterogeneità Formati

207 dataset con formati diversi (CSV, XLSX, HTML, PDF): - Stack estrazione: Docling (PDF),
Pandas (CSV/Excel), BeautifulSoup (HTML) - Normalizzazione: Schema EAV flessibile in Silver
layer

Pagina 4 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

1.6 1.6 Obiettivi del WP2
Al termine del WP2, il Data Lake dovrà:

1. [YES] Ingestire 150+ dataset da fonti eterogenee
2. [YES] Coprire >=95% comuni italiani per dataset prioritari
3. [YES] Fornire tracciabilità completa (lineage Bronze→Silver→Gold)
4. [YES] Validare pipeline ETL con report data quality
5. [YES] Preparare infrastruttura per algoritmi SLO (WP3)

1.7 1.7 Output Attesi (Deliverable)
• D2.1.1: Documento Progettazione Tecnica Data-Lake
• D2.1.2: Solution Design Architettura Cloud
• D2.1.3: Specifiche Infrastruttura Hosting
• D2.2: Script ETL (Python/SQL) documentati e testati
• D2.3: Report di Validazione Pipeline ETL

Prossimo capitolo: Architettura Tecnica Data-Lake

Pagina 5 di 47 Guglielmo Celata

02-architettura-data-lake.md


WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 1: Mermaid Diagram

2 Architettura Tecnica Data-Lake
Deliverable D2.1.1: Documento Progettazione Tecnica Data-Lake

2.1 2.1 Pattern Medallion: Bronze → Silver → Gold

2.1.1 2.1.1 Visione d’Insieme

L’architettura del Data Lake MAPS adotta il pattern Medallion (anche denominato Multi-Hop
Architecture), best practice nell’ecosistema Modern Data Stack, che organizza i dati in tre layer
di progressivo raffinamento con crescente livello di qualità, pulizia e business-readiness:
FONTI ESTERNE → BRONZE → SILVER → GOLD → APPLICAZIONI

2.1.2 2.1.2 Rationale della Scelta

Per il progetto MAPS, l’architettura Medallion è particolarmente indicata per le seguenti moti-
vazioni:

A. Eterogeneità delle Fonti Dati - ~200 dataset da fonti pubbliche diverse (ISTAT, Ministeri,
OpenData) - Formati multipli: CSV, Excel, PDF, JSON, HTML - Qualità variabile: da dataset
strutturati a documenti semi-strutturati - Necessità: Layer progressivi per standardizzare grad-
ualmente l’eterogeneità

B. Requisiti di Audit e Compliance - Dati pubblici ma necessità di tracciabilità per ricerca
scientifica - GDPR Article 30: documentazione delle attività di trattamento dati - Necessità:
Bronze layer immutabile come “source of truth” originale

C. Complessità delle Trasformazioni - Pipeline multi-step: parsing PDF → validazione →
normalizzazione EAV → aggregazioni territoriali - Time-series con fusioni/scissioni comunali (2010-
2025) - Necessità: Separazione logica tra raw ingestion, cleaning e business logic

D. Riutilizzo dei Dati - Stesso dataset usato per multiple analisi (demografia, servizi, mobilità) -
Necessità di evitare re-processing da fonte esterna ogni volta - Necessità: Silver layer come cache
enterprise validata

E. Performance e Scalabilità - Query analitiche su 8.000+ comuni con decine di attributi -
Spatial operations PostGIS computazionalmente intensive - Necessità: Gold layer denormalizzato
per fast queries

2.1.3 2.1.3 Data Flow Completo

2.1.4 2.1.4 Bronze Layer: Raw Data Archive

Ruolo: Archivio immutabile dei dati originali esattamente come scaricati dalla fonte.

Principio chiave: “Never modify, always preserve”

Pagina 6 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.1.4.1 Caratteristiche Tecniche

Aspetto Specifica MAPS
Storage File system locale /data/bronze/ (server op-linkurious)
Formato File originali senza trasformazioni (CSV, XLSX, PDF, JSON,

HTML)
Naming convention /data/bronze/{fonte}/{anno}/{dataset}_{timestamp}.{ext}
Retention policy Indefinita (storage cost è basso: ~50GB totali per 200

dataset)
Backup Snapshot giornalieri via backup.sh script
Access pattern Write-once, read-rarely (solo per reprocessing o audit)

2.1.4.2 Struttura Directory

/data/bronze/
+-- istat/
| +-- 2024/
| | +-- popolazione_comuni_20240218.csv
| | +-- pendolarismo_matrix_20240218.csv
| | +-- confini_amministrativi_20240218.geojson
| | +-- _metadata/
| | +-- popolazione_comuni_20240218.json # Metadata file
| | +-- checksums.sha256
| +-- 2023/
| +-- popolazione_comuni_20230315.csv
+-- minlavoro/
| +-- 2024/
| +-- tabacchi_adm_report_20240218.pdf
| +-- _metadata/
| +-- tabacchi_adm_report_20240218.json
+-- minsalute/
| +-- 2023/
| +-- strutture_sanitarie_asl_20231120.xlsx
| +-- _metadata/
| +-- strutture_sanitarie_asl_20231120.json
+-- minambiente/

+-- 2024/
+-- ato_gas_page_20240115.html # ← HTML file
+-- _metadata/

+-- ato_gas_page_20240115.json

2.1.4.3 Metadata Tracking Ogni file Bronze ha un corrispondente file JSON con metadata:

Esempio: /data/bronze/istat/2024/_metadata/popolazione_comuni_20240218.json

{
"file_path": "/data/bronze/istat/2024/popolazione_comuni_20240218.csv",
"fonte": "istat",

Pagina 7 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

"dataset": "popolazione",
"anno_riferimento": 2024,
"download_timestamp": "2024-02-18T03:00:15Z",
"download_url":

"https://www.istat.it/storage/cartografia/popolazione_comuni_2024.csv",↪

"file_size_bytes": 3355482,
"file_hash_sha256":

"a3f5b8c9d2e1f4a6b7c8d9e0f1a2b3c4d5e6f7a8b9c0d1e2f3a4b5c6d7e8f9a0",↪

"mime_type": "text/csv",
"encoding": "UTF-8",
"rows_detected": 7901,
"columns_detected": 12,
"prefect_flow_run_id": "abc123-456-def-789",
"ingestion_status": "completed"

}

Database tracking (PostgreSQL):

-- Schema: bronze
CREATE TABLE bronze.ingestion_log (

id BIGSERIAL PRIMARY KEY,
fonte VARCHAR(50) NOT NULL,
dataset VARCHAR(100) NOT NULL,
anno_rif INTEGER NOT NULL,
file_path TEXT NOT NULL,
file_size_bytes BIGINT,
file_hash_sha256 CHAR(64),
download_url TEXT,
download_timestamp TIMESTAMP NOT NULL,
prefect_flow_run_id UUID,
status VARCHAR(20) NOT NULL, -- 'completed', 'failed', 'in_progress'
error_message TEXT,
created_at TIMESTAMP DEFAULT NOW(),

UNIQUE (fonte, dataset, anno_rif, file_hash_sha256)
);

-- Index per query frequenti
CREATE INDEX idx_ingestion_log_fonte_dataset ON bronze.ingestion_log(fonte,

dataset);↪

CREATE INDEX idx_ingestion_log_status ON bronze.ingestion_log(status);
CREATE INDEX idx_ingestion_log_timestamp ON

bronze.ingestion_log(download_timestamp DESC);↪

2.1.4.4 Garanzie Bronze Layer Immutabilità: - File Bronze non vengono mai modificati
dopo scrittura - Re-download stesso dataset → nuovo file con timestamp diverso - History completa:
tutti i download conservati

Idempotenza: - Re-esecuzione flow → skip se file con stesso hash già presente - Deduplication
basata su (fonte, dataset, anno_rif, file_hash)

Pagina 8 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 2: Mermaid Diagram

Mermaid Diagram

Figure 3: Mermaid Diagram

Disaster Recovery: - Bronze è la “golden copy” per rebuild completo - Se Silver/Gold si cor-
rompono → reprocess da Bronze - Backup script: bash /root/maps-docker/backup.sh

2.1.4.5 Caso d’Uso: HTML → Structured Data Scenario reale: Molte fonti pubbliche
italiane pubblicano dati come tabelle HTML embedded in pagine web invece di file CSV
scaricabili.

Esempio concreto: MinAmbiente pubblica elenco ATO Gas come tabella HTML su pagina web
(no CSV/Excel disponibile).

Flusso Bronze-HTML:

Vantaggi Pattern Bronze-HTML:
Scenario senza Bronze layer:
→ Script scarica HTML e parsa immediatamente
→ Se parsing fallisce (HTML structure changed) → dati persi
→ Se server web va offline → impossibile reprocessare

Scenario con Bronze layer:
→ HTML salvato in Bronze (immutabile)
→ Parsing fallisce? → Fix parser, reprocess da Bronze
→ Server offline? → Bronze ha copia originale
→ HTML structure cambia? → Version history in Bronze

2.1.5 2.1.5 Silver Layer: Cleaned & Validated Data

Ruolo: Single Source of Truth (SSOT) enterprise - dati puliti, validati, normalizzati.

Principio chiave: “Trust but verify, then store”

2.1.5.1 Caratteristiche Tecniche

Aspetto Specifica MAPS
Storage PostgreSQL schema silver
Formato Tabelle relazionali normalizzate (EAV schema)
Data model Entity-Attribute-Value per gestire eterogeneità
Retention Temporal versioning (valid_from, valid_to) per time-series
Backup Snapshot giornalieri PostgreSQL + WAL archiving
Access pattern Read-heavy (queries analitiche), write-moderate (batch

ingestion)

2.1.5.2 Schema EAV (Entity-Attribute-Value) Rationale: Il progetto MAPS gestisce
~200 dataset con attributi eterogenei (popolazione, servizi, infrastrutture). Un modello EAV of-
fre flessibilità senza continue schema migrations.

Pagina 9 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Schema principale:

-- Schema: silver
CREATE TABLE silver.comuni_attributi_eav (

-- Primary key
id BIGSERIAL PRIMARY KEY,

-- Entity: Comune
codice_istat VARCHAR(6) NOT NULL REFERENCES
gold.comuni_anagrafica(codice_istat),↪

-- Attribute: Nome attributo
attributo VARCHAR(255) NOT NULL,

-- Value: Valore come testo (type inference in Gold)
valore TEXT NOT NULL,

-- Metadata: Provenienza dati
fonte VARCHAR(50) NOT NULL, -- 'istat', 'minlavoro', 'minsalute', etc.
dataset VARCHAR(100) NOT NULL, -- 'popolazione', 'tabacchi', 'asl', etc.
anno_rif INTEGER NOT NULL,

-- Temporal validity
valid_from DATE NOT NULL DEFAULT CURRENT_DATE,
valid_to DATE,

-- Audit trail
created_at TIMESTAMP NOT NULL DEFAULT NOW(),
updated_at TIMESTAMP NOT NULL DEFAULT NOW(),
created_by VARCHAR(100), -- Prefect flow name

-- Constraints
CONSTRAINT unique_attribute_version

UNIQUE (codice_istat, attributo, fonte, dataset, anno_rif),
CONSTRAINT valid_temporal_range

CHECK (valid_to IS NULL OR valid_to >= valid_from),
CONSTRAINT valid_anno_rif

CHECK (anno_rif BETWEEN 2000 AND 2100)
);

-- Indexes for performance
CREATE INDEX idx_silver_codice ON silver.comuni_attributi_eav(codice_istat);
CREATE INDEX idx_silver_attributo ON silver.comuni_attributi_eav(attributo);
CREATE INDEX idx_silver_fonte_dataset ON silver.comuni_attributi_eav(fonte,

dataset);↪

CREATE INDEX idx_silver_anno ON silver.comuni_attributi_eav(anno_rif);
CREATE INDEX idx_silver_valid ON silver.comuni_attributi_eav(valid_from, valid_to)

WHERE valid_to IS NULL; -- Partial index per dati correnti

Pagina 10 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Lookup Fusioni Comunali:

CREATE TABLE silver.fusioni_comunali (
id SERIAL PRIMARY KEY,
codice_istat_old VARCHAR(6),
codice_istat_new VARCHAR(6),
nome_comune_old VARCHAR(255),
nome_comune_new VARCHAR(255),
data_fusione DATE,
tipo_operazione VARCHAR(20), -- 'fusione', 'separazione', 'modifica'

UNIQUE (codice_istat_old, codice_istat_new, data_fusione)
);

2.1.5.3 Esempio Dati EAV Comune AGLIÈ (001001) con attributi da multiple fonti:

-- Da ISTAT popolazione
INSERT INTO silver.comuni_attributi_eav VALUES
(1, '001001', 'popolazione_2024', '2635', 'istat', 'popolazione', 2024,

'2024-02-18', NULL, ...),↪

(2, '001001', 'superficie_kmq', '13.98', 'istat', 'popolazione', 2024,
'2024-02-18', NULL, ...),↪

(3, '001001', 'denominazione', 'AGLIÈ', 'istat', 'popolazione', 2024,
'2024-02-18', NULL, ...);↪

-- Da MinLavoro tabacchi (PDF parsed with Docling)
INSERT INTO silver.comuni_attributi_eav VALUES
(4, '001001', 'num_tabacchi', '2', 'minlavoro', 'tabacchi', 2024, '2024-02-18',

NULL, ...),↪

(5, '001001', 'tabacchi_ids', 'TAB001,TAB002', 'minlavoro', 'tabacchi', 2024,
'2024-02-18', NULL, ...);↪

-- Da MinSalute strutture sanitarie
INSERT INTO silver.comuni_attributi_eav VALUES
(6, '001001', 'num_asl', '1', 'minsalute', 'strutture_sanitarie', 2023,

'2024-01-15', NULL, ...),↪

(7, '001001', 'asl_denominazione', 'ASL TO4', 'minsalute', 'strutture_sanitarie',
2023, '2024-01-15', NULL, ...);↪

-- Da MinAmbiente ATO Gas (parsed from HTML)
INSERT INTO silver.comuni_attributi_eav VALUES
(8, '001001', 'ato_gas_id', 'ATO-PIE-01', 'minambiente', 'ato_gas', 2024,

'2024-02-18', NULL, ...),↪

(9, '001001', 'ato_gas_gestore', 'SMAT S.p.A.', 'minambiente', 'ato_gas', 2024,
'2024-02-18', NULL, ...);↪

2.1.5.4 Trasformazioni Bronze → Silver Pipeline Prefect standard:

@task(name="bronze-to-silver-transform")

Pagina 11 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

def transform_bronze_to_silver(bronze_file_path: str, fonte: str, dataset: str,
anno: int):↪

"""
Standard transformation pipeline: Bronze → Silver

Steps:
1. Parse: Read Bronze file (CSV/PDF/Excel/HTML)
2. Clean: Normalize encoding, trim whitespace, fix typos
3. Validate: Check data quality, enforce business rules
4. Load: Insert into Silver EAV schema
"""

# Step 1: Parse
if bronze_file_path.endswith('.csv'):

df = pd.read_csv(bronze_file_path)
elif bronze_file_path.endswith('.pdf'):

df = extract_pdf_tables(bronze_file_path) # Docling
elif bronze_file_path.endswith('.xlsx'):

df = pd.read_excel(bronze_file_path)
elif bronze_file_path.endswith('.html'):

df = parse_html_to_dataframe(bronze_file_path) # BeautifulSoup

# Step 2: Clean
df = clean_dataframe(df)

# Step 3: Validate with Great Expectations
validation_results = validate_dataframe(df, fonte, dataset)
if not validation_results.passed:

raise ValueError(f"Validation failed: {validation_results.errors}")

# Step 4: Load to Silver (EAV)
load_to_silver_eav(df, fonte, dataset, anno)

2.1.5.5 Temporal Versioning Use case: Gestire modifiche nel tempo (fusioni/scissioni comu-
nali).

Esempio: Fusione comunale nel 2019 (Comune A + Comune B → Comune C)

-- Prima della fusione (2018)
INSERT INTO silver.comuni_attributi_eav VALUES
(100, '001234', 'popolazione', '1500', 'istat', 'popolazione', 2018, '2018-01-01',

'2019-01-01', ...),↪

(101, '001235', 'popolazione', '800', 'istat', 'popolazione', 2018, '2018-01-01',
'2019-01-01', ...);↪

-- Dopo la fusione (2019+)
INSERT INTO silver.comuni_attributi_eav VALUES
(102, '001236', 'popolazione', '2300', 'istat', 'popolazione', 2019, '2019-01-01',

NULL, ...);↪

Pagina 12 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

-- Query: Popolazione comune 001234 nel 2018
SELECT valore FROM silver.comuni_attributi_eav
WHERE codice_istat = '001234'

AND attributo = 'popolazione'
AND '2018-12-31' BETWEEN valid_from AND COALESCE(valid_to, '9999-12-31');

-- Result: 1500

2.1.6 2.1.6 Gold Layer: Business-Ready Analytics

Ruolo: Dati ottimizzati per use case specifici - aggregati, denormalizzati, arricchiti.

Principio chiave: “Optimize for queries, not for storage”

2.1.6.1 Caratteristiche Tecniche

Aspetto Specifica MAPS
Storage PostgreSQL schema gold + PostGIS extensions
Formato Tabelle denormalizzate (wide tables), spatial geometries
Data model Domain-specific (comuni, DLS attractors, time-series)
Retention Snapshot refreshed periodically (daily/weekly)
Backup Snapshot giornalieri (ma rebuiltable da Silver)
Access pattern Read-very-heavy (dashboards, APIs, analytics)

2.1.6.2 Data Mart Principali A. gold.comuni_aggregati (Wide Table)

Denormalizzazione di tutti attributi comuni per fast queries.

CREATE TABLE gold.comuni_aggregati (
-- Identificativi
codice_istat VARCHAR(6) PRIMARY KEY,
denominazione VARCHAR(255) NOT NULL,
denominazione_full VARCHAR(255), -- Con sigla provincia

-- Gerarchia amministrativa
codice_regione CHAR(2) NOT NULL,
denominazione_regione VARCHAR(100) NOT NULL,
codice_provincia CHAR(3),
denominazione_provincia VARCHAR(100),
sigla_provincia CHAR(2),

-- Attributi demografici (da ISTAT)
popolazione_2024 INTEGER,
popolazione_2023 INTEGER,
popolazione_2022 INTEGER,
crescita_popolazione_pct NUMERIC(5,2), -- Calculated: (2024-2023)/2023*100

-- Attributi geografici
superficie_kmq NUMERIC(10,2),

Pagina 13 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

densita_abitanti_kmq NUMERIC(10,2), -- Calculated: pop/superficie
altitudine_m INTEGER,
zona_altimetrica VARCHAR(50), -- 'montagna', 'collina', 'pianura'

-- Geometria PostGIS
geometria GEOMETRY(MultiPolygon, 4326) NOT NULL,
centroide GEOMETRY(Point, 4326),

-- Servizi (da Ministeri)
num_strutture_sanitarie INTEGER DEFAULT 0,
num_asl INTEGER DEFAULT 0,
num_scuole_primarie INTEGER DEFAULT 0,
num_scuole_secondarie INTEGER DEFAULT 0,
num_tabacchi INTEGER DEFAULT 0,
num_uffici_postali INTEGER DEFAULT 0,

-- Infrastrutture (da OpenData)
ha_stazione_ferroviaria BOOLEAN DEFAULT FALSE,
ha_casello_autostradale BOOLEAN DEFAULT FALSE,
ha_aeroporto BOOLEAN DEFAULT FALSE,

-- Utilities (da MinAmbiente - parsed from HTML)
ato_gas_id VARCHAR(50),
ato_gas_denominazione VARCHAR(255),
ato_gas_gestore VARCHAR(255),
ato_acqua_id VARCHAR(50),
ato_rifiuti_id VARCHAR(50),

-- Attributi DLS (Calculated)
attractor_level VARCHAR(50), -- 'metropolitan', 'urban', 'semi-urban',
'rural'↪

cluster_dls_id INTEGER,
isochrone_60min GEOMETRY(MultiPolygon, 4326),

-- Metadata
last_updated TIMESTAMP NOT NULL DEFAULT NOW(),
data_completeness_pct NUMERIC(5,2), -- % attributi popolati

-- Constraints
CONSTRAINT valid_codice CHECK (codice_istat ~ '^\d{6}$')

);

-- Spatial indexes
CREATE INDEX idx_gold_comuni_geometria ON gold.comuni_aggregati USING

GIST(geometria);↪

CREATE INDEX idx_gold_comuni_centroide ON gold.comuni_aggregati USING
GIST(centroide);↪

CREATE INDEX idx_gold_comuni_isochrone ON gold.comuni_aggregati USING
GIST(isochrone_60min);↪

Pagina 14 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

-- Attribute indexes
CREATE INDEX idx_gold_comuni_regione ON gold.comuni_aggregati(codice_regione);
CREATE INDEX idx_gold_comuni_provincia ON gold.comuni_aggregati(codice_provincia);
CREATE INDEX idx_gold_comuni_attractor ON gold.comuni_aggregati(attractor_level);

Esempio query (performance ottimale):

-- Query: Comuni in ATO Gas "ATO-PIE-01" con popolazione > 5000
SELECT

denominazione,
popolazione_2024,
ato_gas_gestore,
num_tabacchi,
attractor_level

FROM gold.comuni_aggregati
WHERE ato_gas_id = 'ATO-PIE-01' -- Da HTML MinAmbiente

AND popolazione_2024 > 5000
ORDER BY popolazione_2024 DESC;

-- Execution: Index scan su ato_gas_id, no joins, < 10ms

B. gold.dls_attractors (DLS Analysis)

Risultati analisi Daily Life Systems (attrattori territoriali).

CREATE TABLE gold.dls_attractors (
codice_istat VARCHAR(6) PRIMARY KEY REFERENCES
gold.comuni_aggregati(codice_istat),↪

denominazione VARCHAR(255) NOT NULL,

-- Attractor classification
attractor_level VARCHAR(50) NOT NULL, -- 'metropolitan', 'urban',
'semi-urban', 'rural'↪

attractor_score NUMERIC(5,2), -- 0-100 score

-- Service availability (weighted scores)
servizi_sanitari_score NUMERIC(5,2),
servizi_educativi_score NUMERIC(5,2),
servizi_commerciali_score NUMERIC(5,2),
servizi_trasporti_score NUMERIC(5,2),

-- Isochrone analysis (60 min travel time)
isochrone_60min GEOMETRY(MultiPolygon, 4326),
comuni_raggiungibili_60min INTEGER[], -- Array codici ISTAT
popolazione_raggiungibile_60min INTEGER,

-- Clustering
cluster_id INTEGER NOT NULL,
cluster_centroid GEOMETRY(Point, 4326),

Pagina 15 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

-- Metadata
calculation_date TIMESTAMP NOT NULL DEFAULT NOW(),

CONSTRAINT valid_attractor_level CHECK (attractor_level IN ('metropolitan',
'urban', 'semi-urban', 'rural'))↪

);

C. gold.time_series_popolazione (Temporal Aggregations)

Time-series aggregati per analisi trend.

CREATE TABLE gold.time_series_popolazione (
regione VARCHAR(100) NOT NULL,
anno INTEGER NOT NULL,
popolazione_totale BIGINT NOT NULL,
popolazione_media_comune INTEGER,
num_comuni INTEGER,
densita_media_kmq NUMERIC(10,2),

-- Calculated metrics
crescita_assoluta INTEGER, -- vs anno precedente
crescita_percentuale NUMERIC(5,2),

PRIMARY KEY (regione, anno)
);

2.1.6.3 Trasformazioni Silver → Gold Materialized views approach:

-- Refresh Gold tables da Silver (scheduled daily)
CREATE OR REPLACE FUNCTION gold.refresh_comuni_aggregati()
RETURNS void AS $$
BEGIN

-- Truncate e rebuild (snapshot approach)
TRUNCATE gold.comuni_aggregati;

-- Pivot EAV → Wide table
INSERT INTO gold.comuni_aggregati
SELECT

c.codice_istat,
c.denominazione,
c.geometria,
ST_Centroid(c.geometria) AS centroide,

-- Pivot attributi da Silver
MAX(CASE WHEN e.attributo = 'popolazione_2024' THEN e.valore::INTEGER END)

AS popolazione_2024,↪

MAX(CASE WHEN e.attributo = 'popolazione_2023' THEN e.valore::INTEGER END)
AS popolazione_2023,↪

MAX(CASE WHEN e.attributo = 'superficie_kmq' THEN e.valore::NUMERIC END)
AS superficie_kmq,↪

Pagina 16 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

-- Calculated fields
(MAX(CASE WHEN e.attributo = 'popolazione_2024' THEN e.valore::NUMERIC

END) -↪

MAX(CASE WHEN e.attributo = 'popolazione_2023' THEN e.valore::NUMERIC
END)) /↪

NULLIF(MAX(CASE WHEN e.attributo = 'popolazione_2023' THEN
e.valore::NUMERIC END), 0) * 100↪

AS crescita_popolazione_pct,

-- ATO attributes (from HTML parsing)
MAX(CASE WHEN e.attributo = 'ato_gas_id' THEN e.valore END) AS ato_gas_id,
MAX(CASE WHEN e.attributo = 'ato_gas_gestore' THEN e.valore END) AS

ato_gas_gestore,↪

NOW() AS last_updated
FROM

gold.comuni_anagrafica c
LEFT JOIN

silver.comuni_attributi_eav e ON e.codice_istat = c.codice_istat
AND e.valid_to IS NULL -- Solo dati correnti

GROUP BY
c.codice_istat, c.denominazione, c.geometria;

-- Analyze per query optimizer
ANALYZE gold.comuni_aggregati;

END;
$$ LANGUAGE plpgsql;

-- Schedule refresh (chiamato da Prefect flow daily)
SELECT gold.refresh_comuni_aggregati();

2.1.7 2.1.7 Presentazione Interattiva

Per una visualizzazione interattiva dell’architettura Medallion e del pattern EAV con esempi specifici
per MAPS:

� Architettura Dati MAPS (presentazione interattiva disponibile nel repository)

La presentazione include: - Visualizzazione interattiva dei tre layer (Bronze/Silver/Gold) - Com-
parazione EAV vs schema tradizionale - Esempi concreti di trasformazioni per MAPS - Gestione
fusioni comunali e temporalità

2.1.8 2.1.8 EAV vs Schema Tradizionale: Comparazione

Perché EAV per MAPS?

Il progetto MAPS gestisce ~200 dataset con attributi eterogenei e variabili nel tempo. Comparazione
tra modelli:

Pagina 17 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.1.8.1 Schema Tradizionale (Wide Table)

codice_istat popolazione n_asili has_ospedale n_scuole ato_gas_id …
001001 45230 12 true ? ? …
001002 8420 2 false ? ? …

Problemi: - [NO] Colonne nulle per attributi non disponibili (storage sprecato) - [NO] Schema
migration ad ogni nuovo dataset - [NO] Nessuna tracciabilità temporale - [NO] Difficile gestire
multipli data sources per stesso attributo

2.1.8.2 Schema EAV (Entity-Attribute-Value)

entity attribute value valid_from source
001001 popolazione 45230 2021-01-01 ISTAT
001001 n_asili_nido 12 2021-01-01 ISTAT
001001 has_ospedale true 2015-01-01 MinSalute
001002 popolazione 8420 2021-01-01 ISTAT
001002 cod_pre_fusione 001045 2017-01-01 ISTAT

Vantaggi: - [YES] Flessibilità: Aggiungi nuovi attributi senza schema migration - [YES] Storage
efficiente: Solo attributi presenti sono memorizzati - [YES] Temporalità: valid_from/valid_to per
time-series - [YES] Lineage: source traccia provenienza dati - [YES] Multi-source: Stesso attributo
da fonti diverse con timestamp

Trade-off: - [WARNING] Query più complesse (richiede CASE WHEN pivot in Gold) - [WARNING]
Performance: Più righe da scannare (mitigato da indici) - [WARNING] Type inference: Valori
TEXT, cast in Gold layer

Decisione per MAPS: EAV in Silver è il compromesso ottimale tra flessibilità e performance per
gestire l’eterogeneità dei 200+ dataset.

2.2 2.2 Stack Tecnologico

2.2.1 2.2.1 Componenti Principali

Componente Tecnologia Versione Ruolo
Storage primario PostgreSQL + PostGIS 17 + 3.5 Master data,

operazioni
spaziali

Orchestrazione Prefect 3.x Scheduling,
monitoring,
lineage ETL

Pagina 18 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 4: Mermaid Diagram

Componente Tecnologia Versione Ruolo
Analytics layer DuckDB 1.x Query

analytics
(federation da
PostgreSQL)

Governance interna OpenMetadata 1.x Catalog
interno,
lineage, data
quality,
profiling

Catalogo open data CKAN 2.10+ Catalogo
pubblico open
data,
DCAT-AP_IT

Data quality Great Expectations 1.x Validation,
anomaly
detection

PDF extraction Docling Latest Estrazione
tabelle da PDF
(97.9%
accuracy)

Object storage MinIO (o GCS) Latest Raw files,
PDFs, archivi
Excel

2.2.2 2.2.2 Rationale delle Scelte Tecnologiche

2.2.2.1 PostgreSQL + PostGIS vs BigQuery/Cloud Data Warehouse Scelta: Post-
greSQL 17 + PostGIS 3.5 (self-hosted)

Motivazioni:

Criterio PostgreSQL + PostGIS BigQuery Decisione
Scala dati Ottimizzato 10�-10� righe Ottimizzato

petabyte
[YES] PostgreSQL
(scala MAPS: ~10�
comuni x ~10³
attributi)

Operazioni
spaziali

PostGIS = industry standard BigQuery GIS =
limitato

[YES] PostgreSQL
(isocrone, buffer,
intersezioni native)

Pagina 19 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Criterio PostgreSQL + PostGIS BigQuery Decisione
Costi Prevedibili (infra fissa) Per-query pricing [YES] PostgreSQL

(~€2.4k/anno vs
€600-6k+/anno
imprevedibili)

Vendor lock-in Zero Alto [YES] PostgreSQL
(principio
indipendenza)

Maturità 30+ anni ~15 anni [YES] PostgreSQL
(affidabilità
rock-solid)

Integrazione Universale Ecosistema GCP [YES] PostgreSQL
(funziona con ogni
tool)

Quando BigQuery avrebbe senso: - Volumi dati > 100GB per query - Centinaia di utenti
concorrenti - Zero tolleranza ops (fully managed) - Budget per costi analytics €5k+/anno

Nessuna di queste condizioni vale per MAPS.

2.2.2.2 DuckDB vs BigQuery per Analytics Scelta: DuckDB (embedded) + PostgreSQL
federation

Motivazioni:

Criterio DuckDB BigQuery Decisione
Dimensionamento GB scale TB/PB scale [YES] DuckDB (volumi

MAPS: ~50GB)
Costi Zero €5/TB query [YES] DuckDB

(risparmio
€600-1,200/anno)

Performance ms su GB ms su TB [YES] DuckDB (query <
10ms sul volume MAPS)

Federation Legge da
PostgreSQL

Richiede export [YES] DuckDB (no ETL
aggiuntivo)

Portabilità File
auto-contenuto

Vendor lock-in [YES] DuckDB (export
Parquet portabile)

Developer UX Embedded Python API REST [YES] DuckDB (zero
overhead setup)

2.2.2.3 Prefect vs Airflow/Dagster Scelta: Prefect 3.x (self-hosted)

Motivazioni:

Pagina 20 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Criterio Prefect Airflow Dagster Decisione
Setup
complexity

Basso Alto Medio [YES] Prefect

Learning curve Gentile Ripida Ripida [YES] Prefect
Python-native Completo Parziale Completo [YES] Prefect
Time-to-value Rapido (ore) Lento (giorni) Medio [YES] Prefect
UI/UX Moderna Datata Moderna [YES]

Prefect/Dagster
Overhead ops Basso Alto Medio [YES] Prefect

Dettagli: Vedere Appendice A del documento di architettura piattaforma per comparazione com-
pleta.

2.2.2.4 Docling vs Alternative PDF Extraction Scelta: Docling (IBM TableFormer) con
fallback PyMuPDF/pdfplumber

Benchmark accuracy estrazione tabelle:

Libreria Accuracy License Active Dev Pandas Native Decisione
Docling
(Table-
Former AI)

97.9% MIT [YES] 2025
(LF AI)

[YES] [YES]
Primary

pdfplumber 85-90% MIT [YES] [WARNING]
(manual)

[YES]
Fallback

PyMuPDF 75-80% AGPL-3.0 [YES] [WARNING] [YES]
Fallback

Camelot 73% MIT [WARNING]
Maintenance

[NO] [NO]

Tabula 67.9% MIT [WARNING]
Maintenance

[NO] [NO]

Azure Doc
Intelligence

~95% Commercial [YES] [YES] [NO] (vendor
lock-in)

Docling vantaggi: - +24-30 punti percentuali su Camelot/Tabula - MIT license vs AGPL
PyMuPDF - Active development (LF AI & Data Foundation, 2025) - Pandas export nativo
(integrazione Great Expectations) - Self-hosted (no cloud dependency)

Dettagli: Vedere documento docs/briefing/comparazione-librerie-estrazione-pdf.md nel
repository per benchmark completo delle 9 librerie analizzate.

2.2.2.5 OpenMetadata vs DataHub/Atlan/Atlas Scelta: OpenMetadata 1.x (self-hosted)

Motivazioni:

Pagina 21 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Criterio OpenMetadata DataHub Atlan Atlas Decisione
Costo
annuale

€1.2k (infra) €1.8-2.4k €12-30k
(lic.)

€3-5k [YES]
OpenMetadata

Setup 1 VM 2-3 VMs 1 VM 11+ VMs [YES]
OpenMetadata

UI/UX Moderna Funzionale Eccellente Datata [YES]
OpenMetadata

Stack fit Perfect Buono Buono Hadoop-
only

[YES]
OpenMetadata

Vendor
lock-in

Zero Zero Alto Zero [YES]
OpenMetadata

Time-to-
value

1-2 giorni 2-4 giorni Medio Settimane [YES]
OpenMetadata

Dettagli: Vedere Appendice B del documento di architettura piattaforma per comparazione com-
pleta.

2.2.2.6 CKAN per Open Data vs Uso Esteso OpenMetadata Scelta: CKAN 2.10+
(self-hosted) per catalogo pubblico + OpenMetadata per governance interna

Motivazioni architetturali:

Criterio CKAN OpenMetadata esteso Decisione
Target audience Pubblico

esterno
Data operators interni [YES] CKAN

(separation of
concerns)

Standard
DCAT-AP_IT

Nativo Non supportato [YES] CKAN
(requisito WP6
D6.3)

Integrazione
dati.gov.it

Built-in
harvester

Richiede sviluppo custom [YES] CKAN (API
standard
CSW/DCAT)

Portale
user-friendly

Web UI
ottimizzata
pubblico

UI tecnica data engineers [YES] CKAN
(esperienza utente)

Rate limiting &
API keys

Nativo Limitato [YES] CKAN
(controllo accessi
pubblici)

Dataset
downloads

Multi-
formato
con
preview

Solo metadata [YES] CKAN (full
data access)

SEO e
discoverability

Ottimizzato
motori
ricerca

Non ottimizzato [YES] CKAN
(findability pubblica)

Pagina 22 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 5: Mermaid Diagram

Criterio CKAN OpenMetadata esteso Decisione
Licensing
metadata

Completo
(Creative
Commons)

Basic [YES] CKAN
(compliance open
data)

Separazione delle responsabilità:

Workflow integrato:

1. Internal governance (OpenMetadata):
• Prefect popola automaticamente metadata durante pipeline execution
• Tracciamento lineage completo: Bronze → Silver → Gold
• Data quality checks con Great Expectations
• Schema profiling e anomaly detection
• Audience: Data engineers, analysts, QA team

2. Public catalog (CKAN):
• Sync automatico da Gold layer (solo dataset approvati per pubblicazione)
• Metadata arricchiti DCAT-AP_IT (licensing, temporal coverage, geographic extent)
• API pubblica per download programmatico
• Harvesting automatico verso dati.gov.it
• Audience: Cittadini, ricercatori, sviluppatori terzi, policy makers

Conformità contrattuale WP6 D6.3:

“Catalogo open data e metadata DCAT-AP_IT […] Integrazione dati.gov.it […] Portal
open data dedicato”

CKAN soddisfa tutti questi requisiti out-of-the-box, mentre estendere OpenMetadata richiederebbe
sviluppo custom significativo (~2-3 mesi/persona) senza garanzie di conformità DCAT-AP_IT.

Costi operativi:

Voce OpenMetadata solo OpenMetadata + CKAN Delta
Infra
(VM)

€1.2k/anno €1.8k/anno +€600/anno

Sviluppo
custom

€15-20k (DCAT-AP_IT) €0 -€15-20k

ManutenzioneAlta (custom code) Bassa (standard stack) Significativo

Conclusione: CKAN è investimento minore (~€600/anno infra) che evita sviluppo custom (€15-
20k) e garantisce compliance contrattuale WP6.

Pagina 23 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.3 2.3 Architettura di Deployment

2.3.1 2.3.1 Deployment su Server op-linkurious

Infrastruttura: - Server: root@op-linkurious (8 CPU, 31GB RAM, 621GB disk) - Domains:
*.maps.deppsviluppo.org (Route53 DNS) - Network: Traefik reverse proxy su gw network

Componenti containerizzati (Docker Compose):

services:
postgres:
image: postgis/postgis:17-3.5
volumes:

- postgres-data:/var/lib/postgresql/data
- ./init-scripts:/docker-entrypoint-initdb.d

environment:
- POSTGRES_DB=maps_db
- POSTGRES_USER=maps

networks:
- gw
- maps-internal

prefect-server:
image: prefecthq/prefect:3-latest
command: prefect server start
volumes:

- prefect-data:/root/.prefect
networks:

- gw
- maps-internal

prefect-worker:
image: prefecthq/prefect:3-latest
command: prefect worker start --pool default-pool
volumes:

- ./flows:/flows
- ./data/bronze:/data/bronze

networks:
- maps-internal

openmetadata:
image: openmetadata/server:latest
depends_on:

- postgres
environment:

- OPENMETADATA_CLUSTER_NAME=maps-cluster
networks:

- gw
- maps-internal

Pagina 24 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 6: Mermaid Diagram

ckan:
image: ckan/ckan-base:2.10
depends_on:

- postgres
- redis

environment:
- CKAN_SITE_URL=https://opendata.maps.deppsviluppo.org
-

CKAN_SQLALCHEMY_URL=postgresql://ckan_user:${CKAN_DB_PASSWORD}@postgres/ckan_db↪

- CKAN_REDIS_URL=redis://redis:6379/1
volumes:

- ckan-storage:/var/lib/ckan
networks:

- gw
- maps-internal

redis:
image: redis:7-alpine
networks:

- maps-internal

volumes:
postgres-data:
prefect-data:
ckan-storage:

networks:
gw:
external: true

maps-internal:
driver: bridge

2.3.2 2.3.2 Data Flow Completo

2.3.3 2.3.3 Security Architecture

Network Isolation: - maps-internal: Comunicazione inter-servizi (PostgreSQL, Prefect workers)
- gw: Traefik reverse proxy per accesso esterno HTTPS

Access Control:

-- PostgreSQL roles
CREATE ROLE maps_writer;
GRANT INSERT, UPDATE ON ALL TABLES IN SCHEMA bronze TO maps_writer;
GRANT INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA silver TO maps_writer;

Pagina 25 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 7: Mermaid Diagram

GRANT SELECT ON ALL TABLES IN SCHEMA gold TO maps_writer;

CREATE ROLE maps_reader;
GRANT SELECT ON ALL TABLES IN SCHEMA gold TO maps_reader;

CREATE ROLE maps_api;
GRANT SELECT ON gold.comuni_aggregati TO maps_api;
GRANT SELECT ON gold.dls_attractors TO maps_api;

Secrets Management: - .env file con credenziali (.gitignore) - Prefect Secret blocks per API
keys - PostgreSQL password rotation via pg_passfile

2.4 2.4 Data Lineage e Governance

2.4.1 2.4.1 Lineage Tracking con OpenMetadata

Flow completo esempio HTML source:

OpenMetadata registration:

# Register Bronze HTML as external table
tracker.register_table(

schema="bronze",
table="minambiente_ato_gas_html",
columns=[{"name": "html_content", "dataType": "TEXT"}],
owner="guglielmo.celata@gransassotech.org",
description="Raw HTML page from MinAmbiente with ATO Gas table",
tags=["minambiente", "ato_gas", "bronze", "html"]

)

# Add lineage
tracker.add_lineage(

source_table="bronze.minambiente_ato_gas_html",
target_table="silver.comuni_attributi_eav",
description="Parse HTML table with BeautifulSoup, extract ATO data",
pipeline="minambiente-ato-gas-flow"

)

2.4.2 2.4.2 Data Quality Metrics

Silver layer quality checks (Great Expectations):

def log_silver_quality_metrics(df: pd.DataFrame, fonte: str, dataset: str):
"""Log data quality to OpenMetadata dopo ingestion Silver"""

metrics = {
"row_count": len(df),

Pagina 26 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

"null_count": df.isnull().sum().sum(),
"completeness": 1 - (df.isnull().sum().sum() / df.size),
"duplicate_count": df.duplicated().sum(),
"unique_comuni": df['codice_istat'].nunique(),
"timestamp": datetime.utcnow().isoformat()

}

# Log to OpenMetadata
tracker = get_metadata_tracker()
tracker.log_data_quality(

schema="silver",
table="comuni_attributi_eav",
metrics=metrics

)

# Alert se quality degraded
if metrics["completeness"] < 0.95:

send_alert(f"Data completeness low: {metrics['completeness']:.1%}")

2.5 2.5 Best Practices Implementate

2.5.1 2.5.1 Idempotenza

Requisito: Re-esecuzione flow non deve generare duplicati o inconsistenze.

Implementazione:

-- Silver: UPSERT con ON CONFLICT
INSERT INTO silver.comuni_attributi_eav

(codice_istat, attributo, valore, fonte, dataset, anno_rif, valid_from)
VALUES (%s, %s, %s, %s, %s, %s, CURRENT_DATE)
ON CONFLICT (codice_istat, attributo, fonte, dataset, anno_rif)
DO UPDATE SET

valore = EXCLUDED.valore,
valid_to = NULL,
updated_at = CURRENT_TIMESTAMP;

2.5.2 2.5.2 Incremental Loading

Strategia: Silver usa temporal versioning, Gold usa snapshot refresh.

# Silver: Incremental append (new records only)
def load_to_silver_incremental(df, fonte, dataset, anno):

existing_keys = get_existing_keys(fonte, dataset, anno)
new_records = df[~df['codice_istat'].isin(existing_keys)]
# Insert solo nuovi record

# Gold: Full refresh periodico (daily snapshot)
def refresh_gold():

# Truncate + rebuild da Silver
gold.refresh_comuni_aggregati()

Pagina 27 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.5.3 2.5.3 Schema Evolution

Gestione backward compatibility:

-- Aggiunta nuova colonna Gold (non-breaking)
ALTER TABLE gold.comuni_aggregati
ADD COLUMN num_biblioteche INTEGER DEFAULT 0;

-- Update da nuova fonte
UPDATE gold.comuni_aggregati c
SET num_biblioteche = (

SELECT COUNT(*)
FROM silver.comuni_attributi_eav e
WHERE e.codice_istat = c.codice_istat

AND e.fonte = 'mincultura'
AND e.dataset = 'biblioteche'

);

-- Alert in OpenMetadata: schema changed

2.6 2.6 Metriche e Monitoraggio

2.6.1 2.6.1 KPIs Architettura Medallion

Metrica Target Strumento
Bronze storage growth < 5GB/anno File system monitoring
Silver ingestion latency < 5 min per flow Prefect execution logs
Silver data quality > 95% completeness Great Expectations
Gold refresh time < 30 min PostgreSQL query logs
Gold query performance < 100ms p95 pg_stat_statements
Lineage coverage 100% flows tracked OpenMetadata API
HTML parsing success
rate

> 98% Prefect task success rate

2.6.2 2.6.2 Monitoring Dashboard

Query Metabase: Medallion health check

SELECT
'Bronze' AS layer,
COUNT(*) AS num_files,
SUM(file_size_bytes) / 1024 / 1024 / 1024 AS size_gb,
COUNT(CASE WHEN status = 'failed' THEN 1 END) AS failed_ingestions

FROM bronze.ingestion_log
UNION ALL
SELECT

'Silver',
COUNT(DISTINCT (codice_istat, fonte, dataset)),
pg_total_relation_size('silver.comuni_attributi_eav') / 1024 / 1024 / 1024,

Pagina 28 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

NULL
FROM silver.comuni_attributi_eav
UNION ALL
SELECT

'Gold',
COUNT(*),
pg_total_relation_size('gold.comuni_aggregati') / 1024 / 1024 / 1024,
NULL

FROM gold.comuni_aggregati;

Prossimo capitolo: Solution Design Cloud - Architettura deployment dettagliata, resource allo-
cation, networking e security hardening.

Pagina 29 di 47 Guglielmo Celata

03-solution-design-cloud.md


WP2: Realizzazione Infrastruttura Data-Lake MAPS

3 Solution Design Architettura Cloud
Deliverable D2.1.2: Solution Design Architettura Cloud

3.1 3.1 Approccio: Self-Hosted su Infrastruttura Esistente

3.1.1 Contesto Deployment

Il Data Lake MAPS verrà deployato su infrastruttura esistente DEPP/Openpolis: - Server:
op-linkurious (8 CPU, 31GB RAM, 621GB disk) - Network: Traefik reverse proxy su rete gw -
Dominio: *.maps.deppsviluppo.org

3.1.2 Rationale Self-Hosted

1. Costi prevedibili: No per-query pricing (BigQuery), no per-storage (S3/GCS)
2. Controllo completo: Indipendenza da vendor lock-in
3. Compliance: Dati rimangono on-premise
4. Scala adeguata: ~10� rows x ~10³ cols non richiedono cloud-scale

3.2 3.2 Container Architecture

3.2.1 Docker Compose Multi-Service

version: '3.8'

services:
# Storage primario
postgres:
image: postgis/postgis:17-3.5
container_name: maps-postgres
volumes:

- postgres-data:/var/lib/postgresql/data
- ./init-scripts:/docker-entrypoint-initdb.d

networks:
- maps-internal

environment:
POSTGRES_DB: maps_db
POSTGRES_USER: maps
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}

deploy:
resources:
limits:

cpus: '4'
memory: 8G

# Orchestrazione
prefect-server:
image: prefecthq/prefect:3-python3.11
container_name: maps-prefect-server
command: prefect server start

Pagina 30 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

networks:
- maps-internal
- gw # Traefik

environment:
PREFECT_SERVER_API_HOST: 0.0.0.0
PREFECT_API_DATABASE_CONNECTION_URL:

postgresql://prefect:${PREFECT_PASSWORD}@maps-postgres:5432/prefect↪

labels:
- "traefik.enable=true"
-

"traefik.http.routers.maps-prefect.rule=Host(`prefect.maps.deppsviluppo.org`)"↪

# Worker pools (multi-pool architecture)
worker-istat:
build: ./prefect/flows/istat/
container_name: maps-worker-istat
command: prefect worker start --pool istat-pool --type process
volumes:

- ./prefect/flows/istat:/flows:ro
- ./shared-data:/data:rw

networks:
- maps-internal

environment:
PREFECT_API_URL: http://maps-prefect-server:4200/api

deploy:
replicas: 2
resources:
limits:

cpus: '1'
memory: 1G

worker-pdf:
build: ./prefect/flows/pdf-extraction/
container_name: maps-worker-pdf
command: prefect worker start --pool pdf-pool --type process
volumes:

- ./prefect/flows/pdf-extraction:/flows:ro
- ./shared-data:/data:rw

networks:
- maps-internal

environment:
PREFECT_API_URL: http://maps-prefect-server:4200/api

deploy:
resources:
limits:

cpus: '4'
memory: 4G

# Data catalog

Pagina 31 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

openmetadata:
image: openmetadata/server:latest
container_name: maps-openmetadata
networks:

- maps-internal
- gw

environment:
DB_HOST: maps-postgres
DB_PORT: 5432
DB_USER: openmetadata
DB_PASSWORD: ${OPENMETADATA_PASSWORD}

labels:
- "traefik.enable=true"
- ⌋

"traefik.http.routers.maps-metadata.rule=Host(`metadata.maps.deppsviluppo.org`)"↪

networks:
maps-internal:
driver: bridge

gw:
external: true

volumes:
postgres-data:
shared-data:

3.3 3.3 Resource Allocation

3.3.1 Dimensionamento Servizi

Servizio CPU RAM Storage Rationale
PostgreSQL 4 core 8GB 200GB Workload principale,

PostGIS operations
Prefect Server 1 core 2GB 10GB Lightweight

orchestrator
Worker ISTAT (x2) 1 core 1GB - Ingestion CSV/Excel
Worker PDF 4 core 4GB - Docling ML models
OpenMetadata 2 core 4GB 50GB Metadata catalog
TOTALE 8 core 20GB 260GB Fit su op-linkurious

(8/31/621)

3.3.2 Scalabilità Verticale/Orizzontale

Verticale (upgrade risorse singolo servizio): - PostgreSQL: fino a 8 core / 16GB (se necessario) -
Worker PDF: fino a 6 core / 6GB (per Docling pesante)

Orizzontale (replica servizi): - Worker ISTAT: scale fino a 4 repliche (docker-compose up -d
--scale worker-istat=4) - Worker PDF: NO scale (ML models memory-intensive)

Pagina 32 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

3.4 3.4 Networking e Sicurezza

3.4.1 Traefik Reverse Proxy

# labels su servizi per routing
traefik.http.routers.{service}.rule=Host(`{service}.maps.deppsviluppo.org`)
traefik.http.routers.{service}.tls=true
traefik.http.routers.{service}.tls.certresolver=letsencrypt

3.4.2 DNS Configuration (AWS Route53)

# Script dns-setup.sh
aws route53 change-resource-record-sets \

--hosted-zone-id ${HOSTED_ZONE_ID} \
--change-batch '{
"Changes": [{
"Action": "CREATE",
"ResourceRecordSet": {
"Name": "prefect.maps.deppsviluppo.org",
"Type": "A",
"TTL": 300,
"ResourceRecords": [{"Value": "${SERVER_IP}"}]

}
}]

}'

3.4.3 Firewall Rules

# Porte esposte su op-linkurious
80/tcp - HTTP (redirect a HTTPS)
443/tcp - HTTPS (Traefik)
5432/tcp - PostgreSQL (solo da rete interna)

3.4.4 Secrets Management

# .env file (NON in git)
POSTGRES_PASSWORD=$(openssl rand -base64 32)
PREFECT_PASSWORD=$(openssl rand -base64 32)
OPENMETADATA_PASSWORD=$(openssl rand -base64 32)

3.5 3.5 Backup e Disaster Recovery

3.5.1 Strategy

PostgreSQL:

# Script backup.sh
#!/bin/bash
TIMESTAMP=$(date +%Y%m%d_%H%M%S)
docker exec maps-postgres pg_dump -U maps maps_db | \

gzip > /backup/maps_db_${TIMESTAMP}.sql.gz

Pagina 33 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

# Retention: 7 daily, 4 weekly, 3 monthly

Shared Data (Bronze layer):

# Rsync incrementale
rsync -avz --progress /data/bronze/ backup-server:/backup/bronze/

RPO/RTO: - Recovery Point Objective: 24h (backup giornaliero) - Recovery Time Objec-
tive: 4h (restore manuale)

[WIP] Questo capitolo sarà completato con: - Diagrammi architetturali dettagliati - Security hard-
ening checklist - Monitoring stack (Prometheus, Grafana) - CI/CD pipeline

Prossimo capitolo: Specifiche Infrastruttura Hosting

Pagina 34 di 47 Guglielmo Celata

04-specifiche-hosting.md


WP2: Realizzazione Infrastruttura Data-Lake MAPS

4 Specifiche Infrastruttura Hosting
Deliverable D2.1.3: Specifiche Infrastruttura Hosting

4.1 4.1 Server Target: op-linkurious

4.1.1 Specifiche Hardware

Hostname: op-linkurious.openpolis.it
CPU: 8 cores
RAM: 31 GB
Disk: 621 GB
OS: Linux (Ubuntu/Debian)
Network: 1 Gbps

4.1.2 Servizi Esistenti

• Traefik reverse proxy (porta 80/443)
• Rete Docker: gw (gateway network)
• Dominio base: *.deppsviluppo.org

4.2 4.2 Requisiti Sistema

4.2.1 Software Prerequisites

# Docker Engine
Docker version >= 24.0
Docker Compose version >= 2.20

# Database Client
psql (PostgreSQL) >= 15

# Utilities
git, make, curl, wget, jq

4.2.2 Disk Layout

/root/maps-docker/ # Deployment root
+-- postgres/ # PostgreSQL init scripts
+-- prefect/ # Flows e configurazioni
+-- openmetadata/ # Metadata config
+-- shared-data/ # Bronze layer storage
| +-- bronze/ # Raw data
| +-- cache/ # Temporary cache
| +-- exports/ # Gold exports
+-- volumes/ # Docker volumes mount points
| +-- postgres-data/ # Database files
| +-- openmetadata-data/ # Metadata DB
+-- backup/ # Backup scripts e dump
+-- logs/ # Centralized logging

Pagina 35 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

4.2.3 Disk Space Allocation

Path Size Purpose
/root/maps-docker/shared-data/bronze/100 GB Raw data files
/root/maps-docker/volumes/postgres-data/150 GB PostgreSQL database
/root/maps-docker/volumes/openmetadata-data/20 GB Metadata catalog
/root/maps-docker/backup/50 GB Database backups (7 days retention)
TOTALE 320 GB Su 621 GB disponibili (52%)

4.3 4.3 Network Configuration

4.3.1 Porte e Routing

Servizio | Porta Interna | Dominio Esterno
-----------------+---------------+----------------------------------
Traefik | 80, 443 | maps.deppsviluppo.org
PostgreSQL | 5432 | do.linkurious.openpolis.it:5432
Prefect UI | 4200 | prefect.maps.deppsviluppo.org
OpenMetadata UI | 8585 | metadata.maps.deppsviluppo.org

4.3.2 DNS Records (Route53)

# A records su deppsviluppo.org
prefect.maps.deppsviluppo.org → ${SERVER_IP}
metadata.maps.deppsviluppo.org → ${SERVER_IP}

# PostgreSQL già esposto su
do.linkurious.openpolis.it → ${SERVER_IP}:5432

4.3.3 SSL/TLS

• Provider: Let’s Encrypt (via Traefik)
• Auto-renewal: Traefik gestisce automaticamente
• Certbot: NO necessario (Traefik integrato)

4.4 4.4 Deployment Procedure

4.4.1 Initial Setup

# 1. Preparazione ambiente
ssh root@op-linkurious
mkdir -p /root/maps-docker
cd /root/maps-docker

# 2. Clone repository (o copia deployment package)
git clone https://gitlab.com/depp/gst-maps.git /tmp/gst-maps
cp -r /tmp/gst-maps/deployment/* .

# 3. Configurazione secrets
cp .env.example .env

Pagina 36 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

nano .env # Modifica password

# 4. Deploy stack
bash deploy.sh

# 5. Verifica
bash status.sh

4.4.2 Deploy Script

#!/bin/bash
# deploy.sh - Main deployment script

set -e

echo "=== MAPS Data Lake Deployment ==="

# Pre-flight checks
echo "Checking prerequisites..."
command -v docker >/dev/null || { echo "Docker not found"; exit 1; }
command -v docker-compose >/dev/null || { echo "Docker Compose not found"; exit 1;

}↪

# Create directories
echo "Creating directory structure..."
mkdir -p shared-data/{bronze,cache,exports}
mkdir -p volumes/{postgres-data,openmetadata-data}
mkdir -p backup logs

# Initialize database
echo "Initializing PostgreSQL..."
docker-compose up -d postgres
sleep 10
docker exec maps-postgres psql -U maps -d maps_db -f

/docker-entrypoint-initdb.d/01-init-schemas.sql↪

# Start remaining services
echo "Starting services..."
docker-compose up -d

# Configure DNS
echo "Configuring DNS..."
bash dns-setup.sh

# Health checks
echo "Running health checks..."
bash status.sh

echo "=== Deployment complete ==="

Pagina 37 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

echo "Access services at:"
echo " - Prefect: https://prefect.maps.deppsviluppo.org"
echo " - OpenMetadata: https://metadata.maps.deppsviluppo.org"
echo " - PostgreSQL: do.linkurious.openpolis.it:5432"

4.5 4.5 Monitoring e Maintenance

4.5.1 Health Checks

#!/bin/bash
# status.sh - Check service health

echo "=== MAPS Services Status ==="

# Docker containers
docker ps --filter "name=maps-" --format "table

{{.Names}}\t{{.Status}}\t{{.Ports}}"↪

# PostgreSQL
docker exec maps-postgres pg_isready -U maps -d maps_db

# Disk usage
df -h /root/maps-docker/

# Memory usage
free -h

# Prefect workers
docker exec maps-prefect-server prefect work-pool ls

4.5.2 Logging

# Centralized logging directory
/root/maps-docker/logs/
+-- postgres/ # PostgreSQL logs
+-- prefect/ # Prefect server logs
+-- workers/ # Worker pool logs
+-- openmetadata/ # OpenMetadata logs

# View logs
docker logs -f maps-postgres # PostgreSQL
docker logs -f maps-prefect-server # Prefect
docker logs -f maps-worker-istat # Worker ISTAT

4.5.3 Backup Automation

# Cron job per backup giornaliero
0 2 * * * /root/maps-docker/backup.sh >> /root/maps-docker/logs/backup.log 2>&1

Pagina 38 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

4.6 4.6 Security Hardening

4.6.1 Firewall Rules

# ufw rules
ufw allow 80/tcp # HTTP (redirect HTTPS)
ufw allow 443/tcp # HTTPS (Traefik)
ufw allow 5432/tcp # PostgreSQL (già esposto)
ufw enable

4.6.2 PostgreSQL Security

-- Revoke public permissions
REVOKE ALL ON SCHEMA public FROM PUBLIC;

-- Create read-only user for analytics
CREATE USER maps_readonly PASSWORD '${RO_PASSWORD}';
GRANT CONNECT ON DATABASE maps_db TO maps_readonly;
GRANT USAGE ON SCHEMA silver, gold TO maps_readonly;
GRANT SELECT ON ALL TABLES IN SCHEMA silver, gold TO maps_readonly;

4.6.3 Secrets Rotation

# Rotate PostgreSQL password
docker exec maps-postgres psql -U postgres -c "ALTER USER maps PASSWORD

'${NEW_PASSWORD}';"↪

# Update .env and restart services
docker-compose restart

4.7 4.7 Disaster Recovery Plan

4.7.1 Backup Strategy

1. Daily: Full PostgreSQL dump (retention: 7 days)
2. Weekly: Bronze layer snapshot (retention: 4 weeks)
3. Monthly: Complete system backup (retention: 3 months)

4.7.2 Recovery Procedure

# 1. Stop services
docker-compose down

# 2. Restore PostgreSQL
gunzip < /backup/maps_db_20260315.sql.gz | \

docker exec -i maps-postgres psql -U maps -d maps_db

# 3. Restore Bronze data
rsync -avz backup-server:/backup/bronze/ /root/maps-docker/shared-data/bronze/

# 4. Restart services
docker-compose up -d

Pagina 39 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

# 5. Verify
bash status.sh

[WIP] Questo capitolo sarà completato con: - Monitoring dashboards (Grafana) - Alerting rules
(Prometheus) - Runbook operativi - Incident response procedures

Prossimo capitolo: Pipeline ETL

Pagina 40 di 47 Guglielmo Celata

05-pipeline-etl.md


WP2: Realizzazione Infrastruttura Data-Lake MAPS

5 Pipeline ETL e Script Documentati
Deliverable D2.2: Script ETL (Python/SQL) documentati e testati

[TODO] Questo capitolo sarà completato durante la fase di sviluppo (Task 2.2, M10-M12)

5.1 5.1 Overview Pipeline ETL

5.1.1 Architettura Prefect Multi-Worker-Pools

Le pipeline ETL sono organizzate per worker pool in base ai requisiti computazionali:
prefect/flows/
+-- istat/ # istat-pool (lightweight, 2 workers)
| +-- Dockerfile
| +-- requirements.txt
| +-- popolazione_flow.py
| +-- pendolarismo_flow.py
+-- pdf-extraction/ # pdf-pool (heavyweight, 1 worker)
| +-- Dockerfile
| +-- requirements.txt
| +-- tabacchi_adm_flow.py
+-- analytics/ # analytics-pool (medium, 1 worker)

+-- Dockerfile
+-- requirements.txt
+-- spatial_aggregation_flow.py

5.1.2 Pattern Comune Pipeline

Tutte le pipeline seguono il pattern sequenziale:

1. 01_ingestion: Download/scrape → Bronze layer
2. 02_transform: Parse → Silver layer (EAV)
3. 03_data_quality: Great Expectations validation
4. 04_metadata: Update OpenMetadata catalog

5.2 5.2 Pipeline ISTAT Popolazione

5.2.1 Scopo

Ingestione dati popolazione residente ISTAT con granularità comunale (2010-2025).

5.2.2 Fonte Dati

• URL: https://demo.istat.it/popres/
• Formato: CSV
• Frequenza: Annuale
• Dimensione: ~8.000 righe x 50 colonne

5.2.3 Codice Sorgente

[TODO] Link al codice in deployment/prefect/flows/istat/popolazione_flow.py

Pagina 41 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

# Skeleton struttura
from prefect import flow, task
from prefect.task_runners import ConcurrentTaskRunner
import pandas as pd
from pathlib import Path

@task(retries=3, retry_delay_seconds=60)
def download_popolazione(anno: int, output_path: Path) -> Path:

"""Download CSV popolazione ISTAT per anno specificato"""
# Implementation...
pass

@task
def load_to_silver(csv_path: Path, anno: int) -> int:

"""Carica dati in silver.comuni_attributi_eav"""
# Implementation...
pass

@task
def validate_data(anno: int) -> dict:

"""Valida completeness e accuracy con Great Expectations"""
# Implementation...
pass

@flow(name="istat-popolazione", log_prints=True)
def popolazione_flow(anno: int = 2025):

"""Flow principale ingestion popolazione ISTAT"""
bronze_path = download_popolazione(anno, Path(f"/data/bronze/istat/{anno}"))
records = load_to_silver(bronze_path, anno)
validation = validate_data(anno)
return {"records": records, "validation": validation}

5.2.4 Deployment

# Build worker image
cd deployment/prefect/flows/istat/
docker build -t maps/worker-istat:latest .

# Deploy flow
prefect deployment build popolazione_flow.py:popolazione_flow \

--name "ISTAT Popolazione ${ANNO}" \
--pool istat-pool \
--cron "0 2 1 * *" # Ogni 1° del mese alle 2AM

prefect deployment apply popolazione_flow-deployment.yaml

5.3 5.3 Pipeline GTFS Trasporto Pubblico
[TODO] Documentazione pipeline GTFS

Pagina 42 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

5.4 5.4 Pipeline PDF Extraction (Tabacchi ADM)
[TODO] Documentazione pipeline Docling

5.5 5.5 Data Quality Framework

5.5.1 Great Expectations Suite

[TODO] Esempio suite validazione

# expectations/istat_popolazione.py
import great_expectations as gx

suite = gx.core.ExpectationSuite(name="istat_popolazione")

# Completeness
suite.add_expectation(

gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_not_be_null",
kwargs={"column": "codice_istat"}

)
)

# Accuracy
suite.add_expectation(

gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_match_regex",
kwargs={

"column": "codice_istat",
"regex": r"^\d{6}$" # 6 cifre

}
)

)

# Timeliness
suite.add_expectation(

gx.core.ExpectationConfiguration(
expectation_type="expect_table_row_count_to_be_between",
kwargs={

"min_value": 7500, # ~95% comuni (8000 x 0.95)
"max_value": 8500

}
)

)

5.6 5.6 Monitoring e Alerting

5.6.1 Prefect Dashboard

• URL: https://prefect.maps.deppsviluppo.org
• Metrics: Flow runs, task duration, failure rate

Pagina 43 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

• Alerting: Email/Slack su failure

5.6.2 Logging

Tutti i log sono centralizzati in /root/maps-docker/logs/workers/.

[WIP] Questo capitolo sarà completato con: - Documentazione completa di tutte le pipeline priori-
tarie - Unit test per ogni task - Integration test end-to-end - Performance benchmarks

Prossimo capitolo: Validazione Pipeline ETL

Pagina 44 di 47 Guglielmo Celata

06-validazione-etl.md


WP2: Realizzazione Infrastruttura Data-Lake MAPS

6 Report di Validazione Pipeline ETL
Deliverable D2.3: Report di Validazione Pipeline ETL

[TODO] Questo capitolo sarà completato dopo l’implementazione e testing (Task 2.3, M10-M12)

6.1 6.1 Metodologia di Validazione

6.1.1 Criteri di Accettazione

Basandoci sull’Acceptance Matrix definita per il progetto, le pipeline ETL devono soddisfare:

6.1.1.1 Completeness

• Target: >=95% comuni italiani coperti per ogni dataset
• Metrica: (comuni_con_dati / totale_comuni) x 100
• Threshold: FAIL se <95%, WARNING se 95-98%, PASS se >=98%

6.1.1.2 Accuracy

• Target: >=99.9% record con codice ISTAT valido
• Metrica: (record_validi / totale_record) x 100
• Validazione: Confronto con reference dataset (confini ISTAT ufficiali)

6.1.1.3 Timeliness

• Target: Ingestion completata entro finestre temporali definite
• Metrica: tempo_esecuzione_pipeline
• Threshold: <24h per pipeline prioritarie

6.1.1.4 Lineage

• Target: Tracciabilità completa fonte → Bronze → Silver → Gold
• Metrica: % record con metadata provenienza completi
• Threshold: 100%

6.1.2 Test Suite

# tests/test_popolazione_pipeline.py
import pytest
from prefect.testing.utilities import prefect_test_harness

def test_popolazione_flow_completeness():
"""Verifica copertura comunale >=95%"""
result = popolazione_flow(anno=2024)
assert result['validation']['completeness'] >= 0.95

def test_popolazione_flow_accuracy():
"""Verifica validità codici ISTAT >=99.9%"""
result = popolazione_flow(anno=2024)
assert result['validation']['accuracy'] >= 0.999

Pagina 45 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

def test_popolazione_flow_timeliness():
"""Verifica esecuzione <1h"""
import time
start = time.time()
popolazione_flow(anno=2024)
duration = time.time() - start
assert duration < 3600 # 1 ora

6.2 6.2 Risultati Test Pipeline ISTAT Popolazione
[TODO] Tabella risultati reali dopo implementazione

Metrica Target Risultato Status
Completeness >=95% TBD �
Accuracy >=99.9% TBD �
Timeliness <24h TBD �
Lineage 100% TBD �

6.3 6.3 Risultati Test Pipeline GTFS
[TODO] Dopo implementazione

6.4 6.4 Risultati Test Pipeline PDF Extraction
[TODO] Dopo implementazione

6.5 6.5 Performance Benchmarks

6.5.1 Throughput

[TODO] Misurazioni reali

Pipeline Record/sec Volume Totale Tempo Esecuzione
ISTAT Popolazione TBD ~8.000 righe TBD
GTFS Italia TBD ~500 MB TBD
PDF Tabacchi TBD ~20.000 record TBD

6.5.2 Resource Utilization

[TODO] Metriche da Prometheus/Grafana

• CPU usage: TBD
• Memory usage: TBD
• Disk I/O: TBD
• Network bandwidth: TBD

Pagina 46 di 47 Guglielmo Celata



WP2: Realizzazione Infrastruttura Data-Lake MAPS

6.6 6.6 Issue Identificati e Risoluzioni
[TODO] Log degli issue trovati durante testing

6.6.1 Issue #1: Fusioni Comunali Non Gestite

Descrizione: Pipeline falliva su comuni fusi nel periodo 2010-2025 Soluzione: Implementato
lookup storico in silver.fusioni_comunali Status: [YES] Risolto

6.6.2 Issue #2: Timeout su Scraping ADM

Descrizione: Timeout dopo 10 minuti su pagine con molte province Soluzione: Aumentato time-
out a 30 minuti, implementato retry con backoff Status: [YES] Risolto

[Continuare con altri issue…]

6.7 6.7 Raccomandazioni

6.7.1 Short-term (1-2 mesi)

1. Implementare caching per reduce API calls esterne
2. Ottimizzare query SQL su Silver layer (indici mancanti)
3. Aggiungere alerting su Slack per pipeline failures

6.7.2 Medium-term (3-6 mesi)

1. Migrare da CSV a Parquet per Bronze layer (compressione)
2. Implementare incremental loading per dataset grandi
3. Setup dashboard Grafana per monitoring real-time

6.7.3 Long-term (6-12 mesi)

1. Valutare DuckDB per analytics queries (federation da PostgreSQL)
2. Implementare data versioning con DVC
3. Esplorare ML per anomaly detection su data quality

6.8 6.8 Conclusioni
[TODO] Sintesi finale dopo completamento testing

Le pipeline ETL del Data Lake MAPS hanno superato i criteri di accettazione definiti, dimostrando:

• [YES] Robustezza: Gestione errori e retry automatici
• [YES] Performance: Throughput adeguato per volumetrie target
• [YES] Qualità: Completeness e accuracy oltre le soglie minime
• [YES] Tracciabilità: Lineage completo Bronze→Silver→Gold

Stato Deliverable: � In Progress (Task 2.3, M10-M12)

Questo documento sarà finalizzato entro 31/05/2026

Pagina 47 di 47 Guglielmo Celata


	Contesto e Requisiti
	1.1 Introduzione al Progetto MAPS
	Obiettivi del Progetto
	Approccio Innovativo

	1.2 Requisiti del Data Lake
	Requisiti Funzionali
	Requisiti Non Funzionali

	1.3 Dati Critici per MVP (Fase 1a)
	1.4 Vincoli Architetturali
	Vincolo V1: Self-Hosted Open Source
	Vincolo V2: Adeguatezza di Scala
	Vincolo V3: Standard Territoriali
	Vincolo V4: Compliance FAIR

	1.5 Sfide Specifiche
	Sfida S1: Assenza Geolocalizzazione Puntuale
	Sfida S2: Evoluzione Confini Amministrativi
	Sfida S3: Gap Temporali COVID
	Sfida S4: Eterogeneità Formati

	1.6 Obiettivi del WP2
	1.7 Output Attesi (Deliverable)

	Architettura Tecnica Data-Lake
	2.1 Pattern Medallion: Bronze → Silver → Gold
	2.1.1 Visione d’Insieme
	2.1.2 Rationale della Scelta
	2.1.3 Data Flow Completo
	2.1.4 Bronze Layer: Raw Data Archive
	2.1.5 Silver Layer: Cleaned & Validated Data
	2.1.6 Gold Layer: Business-Ready Analytics
	2.1.7 Presentazione Interattiva
	2.1.8 EAV vs Schema Tradizionale: Comparazione

	2.2 Stack Tecnologico
	2.2.1 Componenti Principali
	2.2.2 Rationale delle Scelte Tecnologiche

	2.3 Architettura di Deployment
	2.3.1 Deployment su Server op-linkurious
	2.3.2 Data Flow Completo
	2.3.3 Security Architecture

	2.4 Data Lineage e Governance
	2.4.1 Lineage Tracking con OpenMetadata
	2.4.2 Data Quality Metrics

	2.5 Best Practices Implementate
	2.5.1 Idempotenza
	2.5.2 Incremental Loading
	2.5.3 Schema Evolution

	2.6 Metriche e Monitoraggio
	2.6.1 KPIs Architettura Medallion
	2.6.2 Monitoring Dashboard


	Solution Design Architettura Cloud
	3.1 Approccio: Self-Hosted su Infrastruttura Esistente
	Contesto Deployment
	Rationale Self-Hosted

	3.2 Container Architecture
	Docker Compose Multi-Service

	3.3 Resource Allocation
	Dimensionamento Servizi
	Scalabilità Verticale/Orizzontale

	3.4 Networking e Sicurezza
	Traefik Reverse Proxy
	DNS Configuration (AWS Route53)
	Firewall Rules
	Secrets Management

	3.5 Backup e Disaster Recovery
	Strategy


	Specifiche Infrastruttura Hosting
	4.1 Server Target: op-linkurious
	Specifiche Hardware
	Servizi Esistenti

	4.2 Requisiti Sistema
	Software Prerequisites
	Disk Layout
	Disk Space Allocation

	4.3 Network Configuration
	Porte e Routing
	DNS Records (Route53)
	SSL/TLS

	4.4 Deployment Procedure
	Initial Setup
	Deploy Script

	4.5 Monitoring e Maintenance
	Health Checks
	Logging
	Backup Automation

	4.6 Security Hardening
	Firewall Rules
	PostgreSQL Security
	Secrets Rotation

	4.7 Disaster Recovery Plan
	Backup Strategy
	Recovery Procedure


	Pipeline ETL e Script Documentati
	5.1 Overview Pipeline ETL
	Architettura Prefect Multi-Worker-Pools
	Pattern Comune Pipeline

	5.2 Pipeline ISTAT Popolazione
	Scopo
	Fonte Dati
	Codice Sorgente
	Deployment

	5.3 Pipeline GTFS Trasporto Pubblico
	5.4 Pipeline PDF Extraction (Tabacchi ADM)
	5.5 Data Quality Framework
	Great Expectations Suite

	5.6 Monitoring e Alerting
	Prefect Dashboard
	Logging


	Report di Validazione Pipeline ETL
	6.1 Metodologia di Validazione
	Criteri di Accettazione
	Test Suite

	6.2 Risultati Test Pipeline ISTAT Popolazione
	6.3 Risultati Test Pipeline GTFS
	6.4 Risultati Test Pipeline PDF Extraction
	6.5 Performance Benchmarks
	Throughput
	Resource Utilization

	6.6 Issue Identificati e Risoluzioni
	Issue #1: Fusioni Comunali Non Gestite
	Issue #2: Timeout su Scraping ADM

	6.7 Raccomandazioni
	Short-term (1-2 mesi)
	Medium-term (3-6 mesi)
	Long-term (6-12 mesi)

	6.8 Conclusioni


