7 GRAN SASSO

Fondazione Gran Sasso Tech

WP2: Realizzazione Infrastruttura Data-Lake MAPS

Progettazione Tecnica, Solution Design Cloud, Specifiche Hosting

Data: 2026-02-20

Autore: Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

1 Contesto e Requisiti

1.1 1.1 Introduzione al Progetto MAPS

Il progetto MAPS (Multidimensional Area Place-based System) si inserisce nel contesto dell’analisi
territoriale italiana con l'obiettivo di definire Sistemi Locali Omogenei (SLO) basati su pattern
di mobilita quotidiana multidimensionale.

1.1.1 Opbiettivi del Progetto

1. Mappatura sistemi locali: Identificazione di aree funzionali basate su accessibilita ai servizi

2. Individuazione aree svantaggiate: Classificazione territori in base a indicatori di svantag-
gio

3. Analisi investimenti pubblici: Integrazione dati Open Coesione, PNRR, fondi regionali

4. Valutazione impatto: Simulazione scenari “what-if” per allocazione investimenti

1.1.2 Approccio Innovativo

A differenza dei tradizionali Sistemi Locali del Lavoro (SLL) ISTAT, che si basano principal-
mente sul pendolarismo lavorativo, MAPS adotta un approccio multidimensionale che considera:

» Lavoro (32% degli spostamenti)

o Gestione familiare (37.2% degli spostamenti)
« Tempo libero (26.2% degli spostamenti)

o Istruzione (4.6% degli spostamenti)

e Accesso a servizi pubblici essenziali

1.2 1.2 Requisiti del Data Lake

1.2.1 Requisiti Funzionali

1.2.1.1 RF1: Ingestion Dati Eterogenei Il Data Lake deve supportare I'acquisizione di ~200
dataset da fonti eterogenee: - ISTAT: Popolazione, confini amministrativi, pendolarismo - EU-
ROSTAT: Indicatori socio-economici europei - Ministeri: Istruzione, Salute, Lavoro - GTFS:
Trasporto pubblico - OpenStreetMap: Infrastrutture territoriali - Open Coesione: Progetti
finanziati - PNRR: Investimenti Recovery Fund

1.2.1.2 RF2: Gestione Serie Storiche

o Periodo: 2010-2025 (15 anni)

e Granularita: Comunale (~8.000 comuni italiani)
Discontinuita: Gap temporali COVID-19 (2020-2021)
Fusioni comunali: Gestione tramite lookup storico

1.2.1.3 RF3: Standardizzazione Dati

e Normalizzazione codici ISTAT

 Uniformazione coordinate spaziali (EPSG:32632)
o Gestione valori mancanti vs nulli semantici
 Riconciliazione fusioni/separazioni comunali

Pagina 2 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

1.2.1.4 RF4: Pattern Medallion Implementazione del pattern di data lake a 3 livelli: -
Bronze: Dati grezzi immutabili - Silver: Dati standardizzati (schema EAV) - Gold: Data mart
analitici business-ready
1.2.2 Requisiti Non Funzionali
1.2.2.1 RNF1: Completeness
e Target: Copertura >=95% dei comuni italiani per ogni dataset
e Metrica: % comuni con dati completi vs totale
1.2.2.2 RNF2: Accuracy
e Target: >=99.9% record con codice ISTAT valido
o Validazione: Confronto con reference dataset (confini ISTAT ufficiali)
1.2.2.3 RNF3: Timeliness
e Ingestion: Dataset mensili processati entro 5 giorni dall’availability
e Latenza ETL: <24h per pipeline prioritarie
1.2.2.4 RNF4: Lineage
o Tracciabilita: Completa per ogni record (fonte — Bronze — Silver — Gold)
e Versionamento: Tracking modifiche su fonti dati
1.2.2.5 RNF5: Scalabilita
e Volume: Supporto fino a 1TB dati nel triennio
o Throughput: >=100 record/s per pipeline ETL
1.2.2.6 RNF6: Governance

o Catalogazione: Metadata per tutti i dataset
e Quality monitoring: Dashboard data quality real-time
e Audit: Log completo operazioni su dati sensibili

1.3 1.3 Dati Critici per MVP (Fase 1a)

Per la fase iniziale del progetto (Mesi 1-4), si identificano 5 dataset critici:

Dataset Fonte Formato Frequenza Priorita
Confini comunali ISTAT Shapefile/JSON Annuale Alta

+ metadata

Popolazione ISTAT CSV Annuale Alta
residente

Matrici ISTAT CSV Decennale Alta
pendolarismo

Rete trasporto GTFS Z1P Mensile Media
pubblico

Pagina 3 di 47 Guglielmo Celata

@ GRANSASSO
[WP2: Realizzazione Infrastruttura Data-Lake MAPS

Dataset Fonte Formato Frequenza Priorita
Strutture Min. Salute Excel Annuale Media
sanitarie

1.4 1.4 Vincoli Architetturali
1.4.1 Vincolo V1: Self-Hosted Open Source

e Rationale: Indipendenza da vendor, costi prevedibili
e Stack tecnologico: PostgreSQL, PostGIS, Prefect, OpenMetadata, DuckDB
e Esclusioni: BigQuery, Azure, AWS managed services
1.4.2 Vincolo V2: Adeguatezza di Scala
e Volumetria: ~10 righe x ~10% colonne (ordine di grandezza DEPP)
e Giustificazione: BigQuery sarebbe overkill per questa scala
1.4.3 Vincolo V3: Standard Territoriali
¢ PostGIS: Industry standard per dati spaziali
o EPSG:32632: Sistema di riferimento WGS84 / UTM zone 32N
1.4.4 Vincolo V4: Compliance FAIR

Dataset rilasciati devono essere: - Findable: Catalogati con metadata strutturati - Accessible:
Licenze open (CC-BY, CC0) - Interoperable: Formati standard (GeoJSON, GeoParquet, CSV) -
Reusable: DOI per citabilita scientifica

1.5 1.5 Sfide Specifiche

1.5.1 Sfida S1: Assenza Geolocalizzazione Puntuale

La maggior parte dei servizi (scuole, ospedali, uffici postali) non ha coordinate precise: - Approccio:
Presenza/assenza a livello comunale - Implicazione: Isocrone municipality-to-municipality

1.5.2 Sfida S2: Evoluzione Confini Amministrativi

Nel periodo 2010-2025 ci sono state ~100 fusioni/separazioni comunali: - Soluzione: Lookup storico
con validita temporale (SCD Type 2) - Schema Silver: Colonne valid_from, valid_to

1.5.3 Sfida S3: Gap Temporali COVID

Dati 2020-2021 hanno discontinuita metodologiche: - Gestione: Flag covid_affected per dataset
impattati - Analisi: Tecniche di imputation o esclusione periodi

1.5.4 Sfida S4: Eterogeneita Formati

207 dataset con formati diversi (CSV, XLSX, HTML, PDF): - Stack estrazione: Docling (PDF),
Pandas (CSV/Excel), BeautifulSoup (HTML) - Normalizzazione: Schema EAV flessibile in Silver
layer

Pagina 4 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

1.6 1.6 Obiettivi del WP2
Al termine del WP2, il Data Lake dovra:

[YES] Ingestire 150+ dataset da fonti eterogenee

[YES] Coprire >=95% comuni italiani per dataset prioritari

[YES] Fornire tracciabilita completa (lineage Bronze—Silver—Gold)
[YES] Validare pipeline ETL con report data quality

[YES| Preparare infrastruttura per algoritmi SLO (WP3)

U W

1.7 1.7 Output Attesi (Deliverable)

e D2.1.1: Documento Progettazione Tecnica Data-Lake
e D2.1.2: Solution Design Architettura Cloud

e D2.1.3: Specifiche Infrastruttura Hosting

o D2.2: Script ETL (Python/SQL) documentati e testati
e D2.3: Report di Validazione Pipeline ETL

Prossimo capitolo: Architettura Tecnica Data-Lake

Pagina 5 di 47 Guglielmo Celata

02-architettura-data-lake.md

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 1: Mermaid Diagram

2 Architettura Tecnica Data-Lake

Deliverable D2.1.1: Documento Progettazione Tecnica Data-Lake

2.1 2.1 Pattern Medallion: Bronze — Silver — Gold
2.1.1 2.1.1 Visione d’Insieme

L’architettura del Data Lake MAPS adotta il pattern Medallion (anche denominato Multi-Hop
Architecture), best practice nell’ecosistema Modern Data Stack, che organizza i dati in tre layer
di progressivo raffinamento con crescente livello di qualita, pulizia e business-readiness:

FONTI ESTERNE - BRONZE -+ SILVER -+ GOLD - APPLICAZIONI

2.1.2 2.1.2 Rationale della Scelta

Per il progetto MAPS, Darchitettura Medallion ¢ particolarmente indicata per le seguenti moti-
vazioni:

A. Eterogeneita delle Fonti Dati - ~200 dataset da fonti pubbliche diverse (ISTAT, Ministeri,
OpenData) - Formati multipli: CSV, Excel, PDF, JSON, HTML - Qualita variabile: da dataset
strutturati a documenti semi-strutturati - Necessita: Layer progressivi per standardizzare grad-
ualmente ’eterogeneita

B. Requisiti di Audit e Compliance - Dati pubblici ma necessita di tracciabilita per ricerca
scientifica - GDPR Article 30: documentazione delle attivita di trattamento dati - Necessita:
Bronze layer immutabile come “source of truth” originale

C. Complessita delle Trasformazioni - Pipeline multi-step: parsing PDF — validazione —
normalizzazione EAV — aggregazioni territoriali - Time-series con fusioni/scissioni comunali (2010-
2025) - Necessita: Separazione logica tra raw ingestion, cleaning e business logic

D. Riutilizzo dei Dati - Stesso dataset usato per multiple analisi (demografia, servizi, mobilita) -
Necessita di evitare re-processing da fonte esterna ogni volta - Necessita: Silver layer come cache
enterprise validata

E. Performance e Scalabilita - Query analitiche su 8.0004+ comuni con decine di attributi -
Spatial operations PostGIS computazionalmente intensive - Necessita: Gold layer denormalizzato
per fast queries

2.1.3 2.1.3 Data Flow Completo

2.1.4 2.1.4 Bronze Layer: Raw Data Archive
Ruolo: Archivio immutabile dei dati originali esattamente come scaricati dalla fonte.

Principio chiave: “Never modify, always preserve”

Pagina 6 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.1.4.1 Caratteristiche Tecniche

Aspetto Specifica MAPS
Storage File system locale /data/bronze/ (server op-linkurious)
Formato File originali senza trasformazioni (CSV, XLSX, PDF, JSON,
HTML)
Naming convention /data/bronze/{fonte}/{anno}/{dataset}_{timestampl}.{ext}
Retention policy Indefinita (storage cost ¢ basso: ~50GB totali per 200
dataset)
Backup Snapshot giornalieri via backup.sh script
Access pattern Write-once, read-rarely (solo per reprocessing o audit)

2.1.4.2 Struttura Directory

/data/bronze/
+-- istat/
+-— 2024/

| +-- popolazione_comuni_20240218.csv
| +-- pendolarismo_matrix_20240218.csv
| +-- confini_amministrativi_20240218.geojson
I +-- _metadata/
| +-- popolazione_comuni_20240218.json # lMetadata file
I +-- checksums.sha256
+-- 2023/
+-- popolazione_comuni_20230315.csv
+-- minlavoro/

| +-- 2024/
| +-- tabacchi_adm_report_20240218.pdf
| +-— _metadata/

| +-- tabacchi_adm_report_20240218. json
+-- minsalute/

| +-- 2023/
| +-- strutture_sanitarie_asl_20231120.x1lsx
| +-— _metadata/

| +-- strutture_sanitarie_asl_20231120. json
+-- minambiente/

+-- 2024/
+-- ato_gas_page_20240115.html # + HTML file
+-- _metadata/

+-- ato_gas_page_20240115. json

2.1.4.3 Metadata Tracking Ogni file Bronze ha un corrispondente file JSON con metadata:
Esempio: /data/bronze/istat/2024/_metadata/popolazione_comuni_20240218. json

{
"file_path": "/data/bronze/istat/2024/popolazione_comuni_20240218.csv",
"fonte": "istat",

Pagina 7 di 47 Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

"dataset": "popolazione",

"anno_riferimento": 2024,

"download_timestamp": "2024-02-18T03:00:15Z",

"download_url":
"https://www.istat.it/storage/cartografia/popolazione_comuni_2024.csv",

"file_size_bytes": 3355482,

"file_hash_sha256":
"a3f5b8c9d2e1f4abb7c8d9e0f1a2b3c4d5be6£7a8b9c0dle2f3a4bbc6d7e8£9a0",

"mime_type": "text/csv",

"encoding": "UTF-8",

"rows_detected": 7901,

"columns_detected": 12,

"prefect_flow_run_id": "abc123-456-def-789",

"ingestion_status": "completed"

}
Database tracking (PostgreSQL):

-— Schema: bronze

CREATE TABLE bronze.ingestion_log (
id BIGSERIAL PRIMARY KEY,
fonte VARCHAR(50) NOT NULL,
dataset VARCHAR(100) NOT NULL,
anno_rif INTEGER NOT NULL,
file_path TEXT NOT NULL,
file_size_bytes BIGINT,
file hash sha256 CHAR(64),
download_url TEXT,
download_timestamp TIMESTAMP NOT NULL,
prefect_flow_run_id UUID,
status VARCHAR(20) NOT NULL, -- 'completed’', 'failed', 'in_progress'’
error_message TEXT,
created_at TIMESTAMP DEFAULT NOW(),

UNIQUE (fonte, dataset, anno_rif, file_hash_sha256)
);

—-- Index per query frequent?t

CREATE INDEX idx_ingestion_log_fonte_dataset ON bronze.ingestion_log(fonte,
dataset);

CREATE INDEX idx_ingestion_log_status ON bronze.ingestion_log(status);

CREATE INDEX idx_ingestion_log_timestamp ON
bronze.ingestion_log(download_timestamp DESC);

2.1.4.4 Garanzie Bronze Layer Immutabilita: - File Bronze non vengono mai modificati
dopo scrittura - Re-download stesso dataset — nuovo file con timestamp diverso - History completa:
tutti i download conservati

Idempotenza: - Re-esecuzione flow — skip se file con stesso hash gia presente - Deduplication
basata su (fonte, dataset, anno _rif, file_ hash)

Pagina 8 di 47 Guglielmo Celata

@ GRANSASSO
[WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 2: Mermaid Diagram

Mermaid Diagram

Figure 3: Mermaid Diagram

Disaster Recovery: - Bronze ¢ la “golden copy” per rebuild completo - Se Silver/Gold si cor-
rompono — reprocess da Bronze - Backup script: bash /root/maps-docker/backup.sh

2.1.4.5 Caso d’Uso: HTML — Structured Data Scenario reale: Molte fonti pubbliche
italiane pubblicano dati come tabelle HTML embedded in pagine web invece di file CSV
scaricabili.

Esempio concreto: MinAmbiente pubblica elenco ATO Gas come tabella HTML su pagina web
(no CSV/Excel disponibile).

Flusso Bronze-HTML:

Vantaggi Pattern Bronze-HTML:

Scenario senza Bronze layer:
-+ Script scarica HTML e parsa immediatamente
-+ Se parsing fallisce (HTML structure changed) -+ dati persi
+ Se server web va offline -+ impossibile reprocessare

Scenario con Bronze layer:
- HTML salvato in Bronze (immutabile)
-+ Parsing fallisce? - Fix parser, reprocess da Bronze
-+ Server offline? - Bronze ha copia originale
-+ HTML structure cambia? -+ Version history in Bronze

2.1.5 2.1.5 Silver Layer: Cleaned & Validated Data
Ruolo: Single Source of Truth (SSOT) enterprise - dati puliti, validati, normalizzati.

Principio chiave: “Trust but verify, then store”

2.1.5.1 Caratteristiche Tecniche

Aspetto Specifica MAPS

Storage PostgreSQL schema silver

Formato Tabelle relazionali normalizzate (EAV schema)

Data model Entity-Attribute-Value per gestire eterogeneita

Retention Temporal versioning (valid_ from, valid_ to) per time-series

Backup Snapshot giornalieri PostgreSQL + WAL archiving

Access pattern Read-heavy (queries analitiche), write-moderate (batch
ingestion)

2.1.5.2 Schema EAV (Entity-Attribute-Value) Rationale: Il progetto MAPS gestisce
~200 dataset con attributi eterogenei (popolazione, servizi, infrastrutture). Un modello EAV of-
fre flessibilita senza continue schema migrations.

Pagina 9 di 47 Guglielmo Celata

¢ GRANSASS
é S © WP2: Realizzazione Infrastruttura Data-Lake MAPS

Schema principale:

-— Schema: silver

CREATE TABLE silver.comuni_attributi_eav (
-— Primary key
id BIGSERIAL PRIMARY KEY,

-- Entity: Comune
codice_istat VARCHAR(6) NOT NULL REFERENCES
- gold.comuni_anagrafica(codice_istat),

—-—- Attridbute: Nome attributo
attributo VARCHAR(255) NOT NULL,

-— Value: Valore come testo (type inference in Gold)
valore TEXT NOT NULL,

-- Metadata: Provenienza dati

fonte VARCHAR(50) NOT NULL, -— '4stat’, 'minlavoro’', 'minsalute’, etc.
dataset VARCHAR(100) NOT NULL, -- 'popolazione', 'tabacchi', 'asl', etc.
anno_rif INTEGER NOT NULL,

-— Temporal wvalidity
valid_from DATE NOT NULL DEFAULT CURRENT_DATE,
valid_to DATE,

-- Audit trail

created_at TIMESTAMP NOT NULL DEFAULT NOWQ),

updated_at TIMESTAMP NOT NULL DEFAULT NOW(Q),

created_by VARCHAR(100), -- Prefect flow name

-— Constraints
CONSTRAINT unique_attribute_version
UNIQUE (codice_istat, attributo, fonte, dataset, anno _rif),
CONSTRAINT valid_temporal_range
CHECK (valid_to IS NULL OR valid_to >= valid_from),
CONSTRAINT valid_anno_rif
CHECK (anno_rif BETWEEN 2000 AND 2100)
);

-— Indexzes for performance

CREATE INDEX idx_silver_codice ON silver.comuni_attributi_eav(codice_istat);

CREATE INDEX idx_silver_attributo ON silver.comuni_attributi_eav(attributo);

CREATE INDEX idx_silver_fonte_dataset ON silver.comuni_attributi_eav(fonte,
dataset);

CREATE INDEX idx_silver_anno ON silver.comuni_attributi_eav(anno rif);

CREATE INDEX idx_silver_valid ON silver.comuni_attributi_eav(valid_from, valid_to)
WHERE valid_to IS NULL; -- Partial index per dati correnti

Pagina 10 di 47 Guglielmo Celata

éGRAN SASSOTECH WP2: Realizzazione Infrastruttura Data-Lake MAPS

Lookup Fusioni Comunali:

CREATE TABLE silver.fusioni_comunali (
id SERIAL PRIMARY KEY,
codice_istat_old VARCHAR(6),
codice_istat_new VARCHAR(6),
nome_comune_old VARCHAR(255),
nome_comune _new VARCHAR(255),
data_fusione DATE,
tipo_operazione VARCHAR(20), -- 'fustone', 'separazione', 'modifica’

UNIQUE (codice_istat_old, codice_istat_new, data_fusione)

)

2.1.5.3 Esempio Dati EAV Comune AGLIE (001001) con attributi da multiple fonti:

—= Da ISTAT popolazione

INSERT INTO silver.comuni_attributi_eav VALUES

(1, '001001', 'popolazione_2024', '2635', 'istat', 'popolazione', 2024,
< '2024-02-18', NULL, ...),

(2, '001001', 'superficie_kmq', '13.98', 'istat', 'popolazione', 2024,
< '2024-02-18', NULL, ...),

(3, '001001', 'denominazione', 'AGLIE', 'istat', 'popolazione', 2024,

< '2024-02-18', NULL, ...);

-— Da MinLavoro tabaccht (PDF parsed with Docling)

INSERT INTO silver.comuni_attributi_eav VALUES

(4, '001001', 'num_tabacchi', '2', 'minlavoro', 'tabacchi',6 2024, '2024-02-18',
< NULL, ...),

(5, '001001', 'tabacchi_ids', 'TAB0O0O1,TAB002', 'minlavoro', 'tabacchi', 2024,

< '2024-02-18', NULL, ...);

—-— Da MinSalute strutture sanitarie
INSERT INTO silver.comuni_attributi_eav VALUES

(6, '001001', 'num_asl', '1', 'minsalute', 'strutture_sanitarie', 2023,

< '2024-01-15', NULL, ...),

(7, '001001', 'asl_denominazione', 'ASL T04', 'minsalute', 'strutture_sanitarie',
< 2023, '2024-01-15', NULL, ...);

—-— Da MinAmbiente ATO Gas (parsed from HTML)

INSERT INTO silver.comuni_attributi_eav VALUES

(8, '001001', 'ato_gas_id', 'ATO-PIE-01', 'minambiente', 'ato_gas', 2024,

< '2024-02-18', NULL, ...),

(9, '001001', 'ato_gas_gestore', 'SMAT S.p.A.', 'minambiente', 'ato_gas', 2024,
< '2024-02-18', NULL, ...);

2.1.5.4 Trasformazioni Bronze — Silver Pipeline Prefect standard:

Otask(name="bronze-to-silver—-transform")

Pagina 11 di 47 Guglielmo Celata

¢ GRANSA
é SASSO WP2: Realizzazione Infrastruttura Data-Lake MAPS

def transform_bronze_to_silver(bronze_file_path: str, fonte: str, dataset: str,
< anno: int):

nimnn

Standard transformation pipeline: Bronze -+ Silwver

Steps:

1. Parse: Read Bronze file (CSV/PDF/Excel/HTML)

2. Clean: Normalize encoding, trim whitespace, fiz typos
3. Validate: Check data quality, enforce business rules
4. Load: Insert into Silver EAV schema

nmnn

Step 1: Parse
if bronze_file_path.endswith('.csv'):
df = pd.read_csv(bronze_file_path)
elif bronze_file_path.endswith('.pdf'):
df = extract_pdf_tables(bronze_file_path) # Docling
elif bronze_file_path.endswith('.xlsx'):
df = pd.read_excel(bronze_file_path)
elif bronze_file_path.endswith('.html'):
df = parse_html_to_dataframe(bronze_file_path) # BeautifulSoup

Step 2: Clean
df = clean_dataframe(df)

Step 3: Validate with Great Exzpectations
validation_results = validate_dataframe(df, fonte, dataset)
if not validation_results.passed:
raise ValueError(f"Validation failed: {validation_results.errors}")

Step 4: Load to Stlver (EAV)
load_to_silver_eav(df, fonte, dataset, anno)

2.1.5.5 Temporal Versioning Use case: Gestire modifiche nel tempo (fusioni/scissioni comu-
nali).

Esempio: Fusione comunale nel 2019 (Comune A + Comune B — Comune C)

-- Prima della fusione (2018)

INSERT INTO silver.comuni_attributi_eav VALUES

(100, '001234', 'popolazione', '1500', 'istat', 'popolazione', 2018, '2018-01-01',
'2019-01-01', ...),

(101, '001235', 'popolazione', '800', 'istat', 'popolazione', 2018, '2018-01-01',

< '2019-01-01', ...);

—-— Dopo la fusione (2019+)

INSERT INTO silver.comuni_attributi_eav VALUES

(102, '001236', 'popolazione', '2300', 'istat', 'popolazione', 2019, '2019-01-01',
NULL, ...);

Pagina 12 di 47 Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

—— Query: Popolazione comune 001234 nel 2018
SELECT valore FROM silver.comuni_attributi_eav
WHERE codice_istat = '001234'
AND attributo = 'popolazione'
AND '2018-12-31' BETWEEN valid_from AND COALESCE(valid_to, '9999-12-31');
-— Result: 1500

2.1.6 2.1.6 Gold Layer: Business-Ready Analytics
Ruolo: Dati ottimizzati per use case specifici - aggregati, denormalizzati, arricchiti.

Principio chiave: “Optimize for queries, not for storage”

2.1.6.1 Caratteristiche Tecniche

Aspetto Specifica MAPS

Storage PostgreSQL schema gold + PostGIS extensions
Formato Tabelle denormalizzate (wide tables), spatial geometries
Data model Domain-specific (comuni, DLS attractors, time-series)
Retention Snapshot refreshed periodically (daily/weekly)

Backup Snapshot giornalieri (ma rebuiltable da Silver)

Access pattern Read-very-heavy (dashboards, APIs, analytics)

2.1.6.2 Data Mart Principali A. gold.comuni_aggregati (Wide Table)
Denormalizzazione di tutti attributi comuni per fast queries.

CREATE TABLE gold.comuni_aggregati (
-- Identificativi
codice_istat VARCHAR(6) PRIMARY KEY,
denominazione VARCHAR(255) NOT NULL,
denominazione_full VARCHAR(255), -- Con sigla provincia

-- Gerarchia amministrativa

codice_regione CHAR(2) NOT NULL,
denominazione_regione VARCHAR(100) NOT NULL,
codice_provincia CHAR(3),
denominazione_provincia VARCHAR(100),
sigla_provincia CHAR(2),

-— Attributi demografici (da ISTAT)

popolazione_2024 INTEGER,

popolazione_2023 INTEGER,

popolazione_2022 INTEGER,

crescita_popolazione_pct NUMERIC(5,2), -- Calculated: (2024-2023)/2023+100

-- Attributi geografict
superficie_kmq NUMERIC(10,2),

Pagina 13 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS
densita_abitanti_kmq NUMERIC(10,2), -- Calculated: pop/superficie
altitudine_m INTEGER,
zona_altimetrica VARCHAR(50), -- 'montagna’, 'collina', 'pianura’

-- Geometrta PostGIS
geometria GEOMETRY (MultiPolygon, 4326) NOT NULL,
centroide GEOMETRY(Point, 4326),

-- Servizi (da Ministeri)
num_strutture_sanitarie INTEGER DEFAULT O,
num_asl INTEGER DEFAULT O,
num_scuole_primarie INTEGER DEFAULT O,
num_scuole_secondarie INTEGER DEFAULT O,
num_tabacchi INTEGER DEFAULT O,
num_uffici_postali INTEGER DEFAULT O,

-— Infrastrutture (da OpenData)
ha_stazione_ferroviaria BOOLEAN DEFAULT FALSE,
ha_casello_autostradale BOOLEAN DEFAULT FALSE,
ha_aeroporto BOOLEAN DEFAULT FALSE,

-- Uttlities (da MinAmbiente - parsed from HTML)
ato_gas_id VARCHAR(50),

ato_gas_denominazione VARCHAR(255),
ato_gas_gestore VARCHAR(255),

ato_acqua_id VARCHAR(50),

ato_rifiuti_id VARCHAR(50),

-— Attributi DLS (Calculated)

attractor_level VARCHAR(50), -- 'metropolitan’, 'urban', 'semi-urban',
< 'rural’

cluster_dls_id INTEGER,

isochrone_60min GEOMETRY(MultiPolygon, 4326),

-— Metadata

last_updated TIMESTAMP NOT NULL DEFAULT NOW(),
data_completeness_pct NUMERIC(5,2), -- / attributi popolati
-— Constraints

CONSTRAINT valid_codice CHECK (codice_istat ~ '~\d{6}$')

)

-- Spatial indezxes

CREATE INDEX idx_gold_comuni_geometria ON gold.comuni_aggregati USING
GIST(geometria);

CREATE INDEX idx_gold_comuni_centroide ON gold.comuni_aggregati USING
GIST(centroide);

CREATE INDEX idx_gold_comuni_isochrone ON gold.comuni_aggregati USING
GIST(isochrone_60min) ;

Pagina 14 di 47 Guglielmo Celata

N\

@ GRAN SASSO

WP2: Realizzazione Infrastruttura Data-Lake MAPS

—-— Attribute indexes

CREATE INDEX
CREATE INDEX
CREATE INDEX

Esempio query (performance ottimale):

idx_gold_comuni_regione ON gold.comuni_aggregati(codice_regione);
idx_gold_comuni_provincia ON gold.comuni_aggregati(codice_provincia);
idx_gold_comuni_attractor ON gold.comuni_aggregati(attractor_level);

-— Query: Comuni in ATO Gas "ATO-PIE-01" con popolazione > 5000
SELECT

denominazione,
popolazione_2024,
ato_gas_gestore,
num_tabacchi,
attractor_level

FROM gold.comuni_aggregati

WHERE ato_gas_id = 'ATO-PIE-01' -- Da HTML MinAmbiente
AND popolazione_2024 > 5000

ORDER BY popolazione_2024 DESC;

-- Ezecution: Index scan su ato_gas_td, no joins, < 10ms

B. gold.dls_attractors (DLS Analysis)

Risultati analisi Daily Life Systems (attrattori territoriali).

CREATE TABLE gold.dls_attractors (

codice_istat VARCHAR(6) PRIMARY KEY REFERENCES
gold.comuni_aggregati(codice_istat),
denominazione VARCHAR(255) NOT NULL,

-— Attractor classtification

attractor_level VARCHAR(50) NOT NULL, -- ’‘metropolitan’,

'semi-urban', 'rural’
attractor_score NUMERIC(5,2), -- 0-100 score

-- Service availability (weighted scores)
servizi_sanitari_score NUMERIC(5,2),
servizi_educativi_score NUMERIC(5,2),
servizi_commerciali_score NUMERIC(5,2),
servizi_trasporti_score NUMERIC(5,2),

—-— Isochrone analysis (60 min travel time)
isochrone_60min GEOMETRY(MultiPolygon, 4326),

"urban ',

comuni_raggiungibili_60min INTEGER[], -- Array codici ISTAT

popolazione_raggiungibile_60min INTEGER,

-- Clustering
cluster_id INTEGER NOT NULL,
cluster_centroid GEOMETRY(Point, 4326),

Pagina 15 di 47

Guglielmo Celata

@ GRANSASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

-- Metadata
calculation_date TIMESTAMP NOT NULL DEFAULT NOW(Q),

CONSTRAINT valid_attractor_level CHECK (attractor_level IN ('metropolitan',
~ 'urban', 'semi-urban', 'rural'))

)3
C. gold.time_series_popolazione (Temporal Aggregations)
Time-series aggregati per analisi trend.

CREATE TABLE gold.time_series_popolazione (
regione VARCHAR(100) NOT NULL,
anno INTEGER NOT NULL,
popolazione_totale BIGINT NOT NULL,
popolazione_media_comune INTEGER,
num_comuni INTEGER,
densita_media_kmq NUMERIC(10,2),

-— Calculated metrics
crescita_assoluta INTEGER, -- vs anno precedente
crescita_percentuale NUMERIC(5,2),

PRIMARY KEY (regione, anno)
)

2.1.6.3 Trasformazioni Silver — Gold Materialized views approach:

-- Refresh Gold tables da Silver (scheduled daily)
CREATE OR REPLACE FUNCTION gold.refresh_comuni_aggregati()
RETURNS void AS $$
BEGIN
—-- Truncate e rebuild (snapshot approach)
TRUNCATE gold.comuni_aggregati;

-- Pivot EAV -+ Wide table
INSERT INTO gold.comuni_aggregati
SELECT
c.codice_istat,
c.denominazione,
c.geometria,
ST_Centroid(c.geometria) AS centroide,

-— Pivot attributi da Silver

MAX(CASE WHEN e.attributo
AS popolazione_2024,

MAX(CASE WHEN e.attributo = 'popolazione_2023' THEN e.valore::INTEGER END)
AS popolazione_2023,

MAX(CASE WHEN e.attributo = 'superficie_kmq' THEN e.valore::NUMERIC END)
AS superficie_kmq,

'popolazione_2024' THEN e.valore::INTEGER END)

Pagina 16 di 47 Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

—— Calculated fields
(MAX(CASE WHEN e.attributo = 'popolazione_2024' THEN e.valore::NUMERIC
END) -

MAX(CASE WHEN e.attributo = 'popolazione_2023' THEN e.valore::NUMERIC

END)) /
NULLIF (MAX(CASE WHEN e.attributo = 'popolazione_2023' THEN

e.valore: :NUMERIC END), 0) * 100
AS crescita_popolazione_pct,

—-— ATO attributes (from HTML parsing)

MAX(CASE WHEN e.attributo = 'ato_gas_id' THEN e.valore END) AS ato_gas_id,

MAX(CASE WHEN e.attributo = 'ato_gas_gestore' THEN e.valore END) AS
ato_gas_gestore,

NOW() AS last_updated

FROM
gold.comuni_anagrafica c
LEFT JOIN
silver.comuni_attributi_eav e ON e.codice_istat = c.codice_istat
AND e.valid_to IS NULL -- Solo dati correntt
GROUP BY

c.codice_istat, c.denominazione, c.geometria;

-- Analyze per query optimizer
ANALYZE gold.comuni_aggregati;
END;
$$ LANGUAGE plpgsql;

-- Schedule refresh (chiamato da Prefect flow daily)
SELECT gold.refresh_comuni_aggregati();

2.1.7 2.1.7 Presentazione Interattiva

Per una visualizzazione interattiva dell’architettura Medallion e del pattern EAV con esempi specifici
per MAPS:

Architettura Dati MAPS (presentazione interattiva disponibile nel repository)

La presentazione include: - Visualizzazione interattiva dei tre layer (Bronze/Silver/Gold) - Com-
parazione EAV vs schema tradizionale - Esempi concreti di trasformazioni per MAPS - Gestione
fusioni comunali e temporalita

2.1.8 2.1.8 EAV vs Schema Tradizionale: Comparazione

Perché EAV per MAPS?

Il progetto MAPS gestisce ~200 dataset con attributi eterogenei e variabili nel tempo. Comparazione
tra modelli:

Pagina 17 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.1.8.1 Schema Tradizionale (Wide Table)

codice__istat popolazione n_ asili has_ospedale n_scuole ato_gas_id

001001 45230 12 true ? ?

001002 8420 2 false ? ?

Problemi: - [NOJ] Colonne nulle per attributi non disponibili (storage sprecato) - [NO] Schema

migration ad ogni nuovo dataset - [NO] Nessuna tracciabilita temporale - [NO] Difficile gestire
multipli data sources per stesso attributo

2.1.8.2 Schema EAV (Entity-Attribute-Value)

entity attribute value valid_ from source
001001 popolazione 45230 2021-01-01 ISTAT
001001 n_ asili_nido 12 2021-01-01 ISTAT
001001 has_ospedale true 2015-01-01 MinSalute
001002 popolazione 8420 2021-01-01 ISTAT

001002 cod_pre_fusione 001045 2017-01-01 ISTAT

Vantaggi: - [YES]| Flessibilita: Aggiungi nuovi attributi senza schema migration - [YES] Storage
efficiente: Solo attributi presenti sono memorizzati - [YES] Temporalita: valid_from/valid_to per
time-series - [YES] Lineage: source traccia provenienza dati - [YES] Multi-source: Stesso attributo
da fonti diverse con timestamp

Trade-off: - [WARNING]| Query pitt complesse (richiede CASE WHEN pivot in Gold) - [WARNING]
Performance: Piu righe da scannare (mitigato da indici) - [WARNING] Type inference: Valori
TEXT, cast in Gold layer

Decisione per MAPS: EAV in Silver ¢ il compromesso ottimale tra flessibilita e performance per
gestire I'eterogeneita dei 200+ dataset.

2.2 2.2 Stack Tecnologico

2.2.1 2.2.1 Componenti Principali

Componente Tecnologia Versione Ruolo

Storage primario PostgreSQL + PostGIS 17 + 3.5 Master data,
operazioni
spaziali

Orchestrazione Prefect 3.X Scheduling,
monitoring,

lineage ETL

Pagina 18 di 47 Guglielmo Celata

N\

@ GRAN SASSO

WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 4: Mermaid Diagram

Componente

Tecnologia

Versione

Ruolo

Analytics layer

Governance interna

Catalogo open data

Data quality

PDF extraction

Object storage

DuckDB

OpenMetadata

CKAN

Great Expectations

Docling

MinIO (o GCS)

1.x

1.x

2.10+

Latest

Latest

Query
analytics
(federation da
PostgreSQL)
Catalog
interno,
lineage, data
quality,
profiling
Catalogo
pubblico open
data,
DCAT-AP_IT
Validation,
anomaly
detection
Estrazione
tabelle da PDF
(97.9%
accuracy)
Raw files,
PDFs, archivi
Excel

2.2.2 2.2.2 Rationale delle Scelte Tecnologiche

2.2.2.1 PostgreSQL + PostGIS vs BigQuery/Cloud Data Warehouse Scelta: Post-
greSQL 17 + PostGIS 3.5 (self-hosted)

Motivazioni:

Criterio PostgreSQL + PostGIS BigQuery Decisione

Scala dati Ottimizzato 10 -10 righe Ottimizzato [YES] PostgreSQL

petabyte (scala MAPS: ~10

comuni x ~103
attributi)

Operazioni PostGIS = industry standard BigQuery GIS = [YES] PostgreSQL

spaziali limitato (isocrone, buffer,

intersezioni native)

Pagina 19 di 47

Guglielmo Celata

@ GRANSASSO
[WP2: Realizzazione Infrastruttura Data-Lake MAPS

Criterio PostgreSQL + PostGIS BigQuery Decisione

Costi Prevedibili (infra fissa) Per-query pricing [YES| PostgreSQL
(~€2.4k/anno vs
€600-6k+ /anno
imprevedibili)

Vendor lock-in Zero Alto [YES] PostgreSQL
(principio
indipendenza)

Maturita 30+ anni ~15 anni [YES] PostgreSQL
(affidabilita
rock-solid)

Integrazione Universale Ecosistema GCP [YES] PostgreSQL
(funziona con ogni
tool)

Quando BigQuery avrebbe senso: - Volumi dati > 100GB per query - Centinaia di utenti
concorrenti - Zero tolleranza ops (fully managed) - Budget per costi analytics €5k+ /anno

Nessuna di queste condizioni vale per MAPS.

2.2.2.2 DuckDB vs BigQuery per Analytics Scelta: DuckDB (embedded) + PostgreSQL

federation

Motivazioni:

Criterio DuckDB BigQuery Decisione

Dimensionamento GB scale TB/PB scale [YES] DuckDB (volumi
MAPS: ~50GB)

Costi Zero €5/TB query [YES] DuckDB
(risparmio
€600-1,200/anno)

Performance ms su GB ms su TB [YES] DuckDB (query <
10ms sul volume MAPS)

Federation Legge da Richiede export [YES] DuckDB (no ETL

PostgreSQL aggiuntivo)

Portabilita File Vendor lock-in [YES] DuckDB (export

auto-contenuto Parquet portabile)

Developer UX Embedded Python API REST [YES] DuckDB (zero

overhead setup)

2.2.2.3 Prefect vs Airflow/Dagster Scelta: Prefect 3.x (self-hosted)

Motivazioni:

Pagina 20 di 47 Guglielmo Celata

@ GRANSASSO
[WP2: Realizzazione Infrastruttura Data-Lake MAPS

Criterio Prefect Airflow Dagster Decisione
Setup Basso Alto Medio [YES] Prefect
complexity
Learning curve Gentile Ripida Ripida [YES] Prefect
Python-native Completo Parziale Completo [YES]| Prefect
Time-to-value Rapido (ore) Lento (giorni) Medio [YES] Prefect
UI/UX Moderna Datata Moderna [YES]
Prefect/Dagster
Overhead ops Basso Alto Medio [YES] Prefect

Dettagli: Vedere Appendice A del documento di architettura piattaforma per comparazione com-
pleta.

2.2.2.4 Docling vs Alternative PDF Extraction Scelta: Docling (IBM TableFormer) con
fallback PyMuPDF /pdfplumber

Benchmark accuracy estrazione tabelle:

Libreria Accuracy License Active Dev Pandas Native Decisione
Docling 97.9% MIT [YES] 2025 [YES] [YES]
(Table- (LF AI) Primary
Former AT)
pdfplumber 85-90% MIT [YES] [WARNING] [YES]
(manual) Fallback
PyMuPDF 75-80% AGPL-3.0 [YES] [WARNING] [YES]
Fallback
Camelot 73% MIT [WARNING] [NOJ [NOJ
Maintenance
Tabula 67.9% MIT [WARNING] [NO] [NO]
Maintenance
Azure Doc ~95% Commercial [YES] [YES] [NO] (vendor
Intelligence lock-in)

Docling vantaggi: - +24-30 punti percentuali su Camelot/Tabula - MIT license vs AGPL
PyMuPDF - Active development (LF AI & Data Foundation, 2025) - Pandas export nativo
(integrazione Great Expectations) - Self-hosted (no cloud dependency)

Dettagli: Vedere documento docs/briefing/comparazione-librerie-estrazione-pdf.md nel
repository per benchmark completo delle 9 librerie analizzate.

2.2.2.5 OpenMetadata vs DataHub/Atlan/Atlas Scelta: OpenMetadata 1.x (self-hosted)

Motivazioni:

Pagina 21 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

Criterio OpenMetadata DataHub Atlan Atlas Decisione
Costo €1.2k (infra) €1.8-2.4k €12-30k €3-5k [YES]
annuale (lic.) OpenMetadata
Setup 1 VM 2-3 VMs 1 VM 11+ VMs [YES]
OpenMetadata
UI/UX Moderna Funzionale Eccellente Datata [YES]
OpenMetadata
Stack fit Perfect Buono Buono Hadoop- [YES]
only OpenMetadata
Vendor Zero Zero Alto Zero [YES]
lock-in OpenMetadata
Time-to- 1-2 giorni 2-4 giorni Medio Settimane [YES]
value OpenMetadata

Dettagli: Vedere Appendice B del documento di architettura piattaforma per comparazione com-

pleta.

2.2.2.6 CKAN per Open Data vs Uso Esteso OpenMetadata Scelta: CKAN 2.10+
(self-hosted) per catalogo pubblico + OpenMetadata per governance interna

Motivazioni architetturali:

Criterio CKAN OpenMetadata esteso Decisione
Target audience Pubblico Data operators interni [YES] CKAN
esterno (separation of
concerns)
Standard Nativo Non supportato [YES] CKAN
DCAT-AP_IT (requisito WP6
D6.3)
Integrazione Built-in Richiede sviluppo custom [YES] CKAN (API
dati.gov.it harvester standard
CSW/DCAT)
Portale Web Ul UI tecnica data engineers [YES] CKAN
user-friendly ottimizzata (esperienza utente)
pubblico
Rate limiting & Nativo Limitato [YES] CKAN
API keys (controllo accessi
pubblici)
Dataset Multi- Solo metadata [YES] CKAN (full
downloads formato data access)
con
preview
SEO e Ottimizzato Non ottimizzato [YES] CKAN
discoverability motori (findability pubblica)
ricerca

Pagina 22 di 47

Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 5: Mermaid Diagram

Criterio CKAN OpenMetadata esteso Decisione

Licensing Completo Basic [YES] CKAN

metadata (Creative (compliance open
Commons) data)

Separazione delle responsabilita:

Workflow integrato:

1. Internal governance (OpenMetadata):
e Prefect popola automaticamente metadata durante pipeline execution
e Tracciamento lineage completo: Bronze — Silver — Gold
e Data quality checks con Great Expectations
e Schema profiling e anomaly detection
e Audience: Data engineers, analysts, QA team
2. Public catalog (CKAN):
e Sync automatico da Gold layer (solo dataset approvati per pubblicazione)
o Metadata arricchiti DCAT-AP_IT (licensing, temporal coverage, geographic extent)
e API pubblica per download programmatico
o Harvesting automatico verso dati.gov.it
¢ Audience: Cittadini, ricercatori, sviluppatori terzi, policy makers

Conformita contrattuale WP6 D6.3:

“Catalogo open data e metadata DCAT-AP_IT [..] Integrazione dati.gov.it [..] Portal
open data dedicato”

CKAN soddisfa tutti questi requisiti out-of-the-box, mentre estendere OpenMetadata richiederebbe
sviluppo custom significativo (~2-3 mesi/persona) senza garanzie di conformitd DCAT-AP_IT.

Costi operativi:

Voce OpenMetadata solo OpenMetadata + CKAN Delta

Infra €1.2k/anno €1.8k/anno +€600/anno
(VM)

Sviluppo €15-20k (DCAT-AP_IT) €0 -€15-20k
custom

Manutenziondlta (custom code) Bassa (standard stack) Significativo

Conclusione: CKAN ¢ investimento minore (~€600/anno infra) che evita sviluppo custom (€15-
20k) e garantisce compliance contrattuale WP6.

Pagina 23 di 47 Guglielmo Celata

& GRAN SASSOTECH

WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.3 2.3 Architettura di Deployment

2.3.1 2.3.1 Deployment su Server op-linkurious

Infrastruttura: - Server: root@op-linkurious (8 CPU, 31GB RAM, 621GB disk) - Domains:
*.maps .deppsviluppo.org (Route53 DNS) - Network: Traefik reverse proxy su gw network

Componenti containerizzati (Docker Compose):

services:
postgres:
image: postgis/postgis:17-3.5
volumes:
- postgres-data:/var/lib/postgresql/data

- ./init-scripts:/docker-entrypoint-initdb.d

environment:
- POSTGRES_DB=maps_db
- POSTGRES_USER=maps
networks:
- gu
- maps-internal

prefect-server:

image: prefecthq/prefect:3-latest
command: prefect server start
volumes:

- prefect-data:/root/.prefect
networks:

- gw

- maps-internal

prefect-worker:
image: prefecthq/prefect:3-latest

command: prefect worker start --pool default-pool

volumes:

- ./flows:/flows

- ./data/bronze:/data/bronze
networks:

- maps-internal

openmetadata:
image: openmetadata/server:latest
depends_on:
- postgres
environment:

- OPENMETADATA_CLUSTER_NAME=maps-cluster

networks:
- gu
- maps-internal

Pagina 24 di 47

Guglielmo Celata

¢ GRANSA
é SASSO WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 6: Mermaid Diagram

ckan:
image: ckan/ckan-base:2.10
depends_on:
- postgres
- redis
environment:
- CKAN_SITE_URL=https://opendata.maps.deppsviluppo.org
CKAN_SQLALCHEMY_URL=postgresql://ckan_user:${CKAN_DB_PASSWORD}@postgres/ckan_db
- CKAN_REDIS URL=redis://redis:6379/1
volumes:
- ckan-storage:/var/lib/ckan
networks:
- gu
- maps-internal

redis:
image: redis:7-alpine
networks:

- maps-internal

volumes:
postgres-data:
prefect-data:
ckan-storage:

networks:
gw:
external: true
maps-internal:
driver: bridge

2.3.2 2.3.2 Data Flow Completo

2.3.3 2.3.3 Security Architecture

Network Isolation: - maps-internal: Comunicazione inter-servizi (PostgreSQL, Prefect workers)
- gw: Traefik reverse proxy per accesso esterno HT'TPS

Access Control:

—-— PostgreS(YL roles

CREATE ROLE maps_writer;

GRANT INSERT, UPDATE ON ALL TABLES IN SCHEMA bronze TO maps_writer;

GRANT INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA silver TO maps_writer;

Pagina 25 di 47 Guglielmo Celata

@ GRANSASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

Mermaid Diagram

Figure 7: Mermaid Diagram

GRANT SELECT ON ALL TABLES IN SCHEMA gold TO maps_writer;

CREATE ROLE maps_reader;
GRANT SELECT ON ALL TABLES IN SCHEMA gold TO maps_reader;

CREATE ROLE maps_api;
GRANT SELECT ON gold.comuni_aggregati TO maps_api;
GRANT SELECT ON gold.dls_attractors TO maps_api;

Secrets Management: - .env file con credenziali (.gitignore) - Prefect Secret blocks per API
keys - PostgreSQL password rotation via pg_passfile

2.4 2.4 Data Lineage e Governance
2.4.1 2.4.1 Lineage Tracking con OpenMetadata

Flow completo esempio HTML source:

OpenMetadata registration:

Register Bronze HTML as external table

tracker.register_table(
schema="bronze",
table="minambiente_ato_gas_html",
columns=[{"name": "html_content", "dataType": "TEXT"1}],
owner="guglielmo.celata@gransassotech.org",
description="Raw HTML page from MinAmbiente with ATO Gas table",
tags=["minambiente", "ato_gas", "bronze", "html"]

Add lineage

tracker.add_lineage(
source_table="bronze.minambiente_ato_gas_html",
target_table="silver.comuni_attributi_eav",
description="Parse HTML table with BeautifulSoup, extract ATO data",
pipeline="minambiente-ato-gas-flow"

2.4.2 2.4.2 Data Quality Metrics
Silver layer quality checks (Great Expectations):
def log_silver_quality_metrics(df: pd.DataFrame, fonte: str, dataset: str):

"""Log data quality to UpenMetadata dopo ingestion Silver"""

metrics = {
"row_count": len(df),

Pagina 26 di 47 Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

"null count": df.isnull().sum().sum(),

"completeness": 1 - (df.isnull().sum().sum() / df.size),
"duplicate_count": df.duplicated().sum(),
"unique_comuni": df['codice_istat'].nunique(),
"timestamp": datetime.utcnow().isoformat()

Log to UpenMetadata

tracker = get_metadata_tracker()

tracker.log_data_quality(
schema="silver",
table="comuni_attributi_eav",
metrics=metrics

Alert se quality degraded
if metrics["completeness"] < 0.95:
send_alert(f"Data completeness low: {metrics['completeness']:.1%}")

2.5 2.5 Best Practices Implementate

2.5.1 2.5.1 Idempotenza

Requisito: Re-esecuzione flow non deve generare duplicati o inconsistenze.
Implementazione:

-— Stlver: UPSERT com ON CONFLICT
INSERT INTO silver.comuni_attributi_eav
(codice_istat, attributo, valore, fonte, dataset, anno_rif, valid_from)
VALUES (%s, %s, %s, %s, %s, %s, CURRENT_DATE)
ON CONFLICT (codice_istat, attributo, fonte, dataset, anno_rif)
DO UPDATE SET
valore = EXCLUDED.valore,
valid_to = NULL,
updated_at = CURRENT_TIMESTAMP;

2.5.2 2.5.2 Incremental Loading
Strategia: Silver usa temporal versioning, Gold usa snapshot refresh.

Silver: Incremental append (new records only)

def load_to_silver_ incremental(df, fonte, dataset, anno):
existing_keys = get_existing keys(fonte, dataset, anno)
new_records = df[~df['codice_istat'].isin(existing_keys)]
Insert solo nuovt record

Gold: Full refresh periodico (daily snapshot)
def refresh_gold():
Truncate + rebutld da Silver
gold.refresh_comuni_aggregati()

Pagina 27 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

2.5.3 2.5.3 Schema Evolution
Gestione backward compatibility:

-- Aggiunta nuova colonna Gold (non-breaking)
ALTER TABLE gold.comuni_aggregati
ADD COLUMN num_biblioteche INTEGER DEFAULT O;

-- Update da nuova fonte
UPDATE gold.comuni_aggregati c
SET num_biblioteche = (
SELECT COUNT (*)
FROM silver.comuni_attributi_eav e
WHERE e.codice_istat = c.codice_istat
AND e.fonte = 'mincultura'
AND e.dataset = 'biblioteche'
);

-- Alert in OpenMetadata: schema changed

2.6 2.6 Metriche e Monitoraggio
2.6.1 2.6.1 KPIs Architettura Medallion

Metrica Target Strumento

Bronze storage growth < 5GB/anno File system monitoring
Silver ingestion latency < 5 min per flow Prefect execution logs
Silver data quality > 95% completeness Great Expectations
Gold refresh time < 30 min PostgreSQL query logs
Gold query performance < 100ms p95 pg_stat_ statements
Lineage coverage 100% flows tracked OpenMetadata API
HTML parsing success > 98% Prefect task success rate
rate

2.6.2 2.6.2 Monitoring Dashboard
Query Metabase: Medallion health check

SELECT
'Bronze' AS layer,
COUNT(*) AS num_files,
SUM(file_size_bytes) / 1024 / 1024 / 1024 AS size_gb,
COUNT(CASE WHEN status = 'failed' THEN 1 END) AS failed_ingestions
FROM bronze.ingestion_log
UNION ALL
SELECT
'Silver',
COUNT (DISTINCT (codice_istat, fonte, dataset)),
pg_total_relation_size('silver.comuni_attributi_eav') / 1024 / 1024 / 1024,

Pagina 28 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

NULL
FROM silver.comuni_attributi_eav
UNION ALL
SELECT
'Gold',
COUNT (%) ,
pg_total_relation_size('gold.comuni_aggregati') / 1024 / 1024 / 1024,
NULL
FROM gold.comuni_aggregati;

Prossimo capitolo: Solution Design Cloud - Architettura deployment dettagliata, resource allo-
cation, networking e security hardening.

Pagina 29 di 47 Guglielmo Celata

03-solution-design-cloud.md

@ GRANSASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

3 Solution Design Architettura Cloud

Deliverable D2.1.2: Solution Design Architettura Cloud

3.1 3.1 Approccio: Self-Hosted su Infrastruttura Esistente

3.1.1 Contesto Deployment

Il Data Lake MAPS verra deployato su infrastruttura esistente DEPP /Openpolis: - Server:
op-linkurious (8 CPU, 31GB RAM, 621GB disk) - Network: Traefik reverse proxy su rete gw -
Dominio: *.maps.deppsviluppo.org

3.1.2 Rationale Self-Hosted

Costi prevedibili: No per-query pricing (BigQuery), no per-storage (S3/GCS)
Controllo completo: Indipendenza da vendor lock-in

Compliance: Dati rimangono on-premise

Scala adeguata: ~10 rows x ~103 cols non richiedono cloud-scale

D =

3.2 3.2 Container Architecture
3.2.1 Docker Compose Multi-Service

version: '3.8'

services:
Storage primario
postgres:
image: postgis/postgis:17-3.5
container_name: maps-postgres
volumes:
- postgres-data:/var/lib/postgresql/data
- ./init-scripts:/docker-entrypoint-initdb.d
networks:
- maps-internal
environment:
POSTGRES_DB: maps_db
POSTGRES_USER: maps
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD}
deploy:
resources:
limits:
cpus: '4'
memory: 8G

Orchestrazione

prefect-server:
image: prefecthq/prefect:3-python3.11
container_name: maps-prefect-server
command: prefect server start

Pagina 30 di 47 Guglielmo Celata

KGRAN SASSOTECH WP2: Realizzazione Infrastruttura Data-Lake MAPS

networks:
- maps-internal
- gw # Traefik
environment:
PREFECT_SERVER_API_HOST: 0.0.0.0
PREFECT_API_DATABASE_CONNECTION_URL:
« postgresql://prefect:${PREFECT_PASSWORD}@maps-postgres:5432/prefect
labels:
- "traefik.enable=true"

o "traefik.http.routers.maps-prefect.rule=Host(prefect.maps.deppsviluppo.org)"

Worker pools (multi-pool architecture)
worker-istat:
build: ./prefect/flows/istat/
container_name: maps-worker-istat
command: prefect worker start --pool istat-pool --type process
volumes:
- ./prefect/flows/istat:/flows:ro
- ./shared-data:/data:rw
networks:
- maps-internal
environment:
PREFECT_API_URL: http://maps-prefect-server:4200/api
deploy:
replicas: 2
resources:
limits:
cpus: '1'
memory: 1G

worker-pdf:
build: ./prefect/flows/pdf-extraction/
container_name: maps-worker-pdf
command: prefect worker start --pool pdf-pool --type process
volumes:
- ./prefect/flows/pdf-extraction:/flows:ro
- ./shared-data:/data:rw
networks:
- maps-internal
environment:
PREFECT_API_URL: http://maps-prefect-server:4200/api
deploy:
resources:
limits:
cpus: '4'
memory: 4G

Data catalog

Pagina 31 di 47 Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

openmetadata:
image: openmetadata/server:latest
container_name: maps-openmetadata
networks:
- maps-internal
- gu
environment:
DB_HOST: maps-postgres
DB_PORT: 5432
DB_USER: openmetadata
DB_PASSWORD: ${OPENMETADATA_PASSWORD}
labels:
- "traefik.enable=true"

J
& "traefik.http.routers.maps-metadata.rule=Host (‘metadata.maps.deppsviluppo.org)"

networks:
maps-internal:
driver: bridge
gw:
external: true

volumes:

postgres-data:
shared-data:

3.3 3.3 Resource Allocation

3.3.1 Dimensionamento Servizi

Servizio CPU RAM Storage Rationale
PostgreSQL 4 core 8GB 200GB Workload principale,
PostGIS operations
Prefect Server 1 core 2GB 10GB Lightweight
orchestrator
Worker ISTAT (x2) 1 core 1GB - Ingestion CSV/Excel
Worker PDF 4 core 4GB - Docling ML models
OpenMetadata 2 core 4GB 50GB Metadata catalog
TOTALE 8 core 20GB 260GB Fit su op-linkurious
(8/31/621)

3.3.2 Scalabilita Verticale/Orizzontale

Verticale (upgrade risorse singolo servizio): - PostgreSQL: fino a 8 core / 16GB (se necessario) -
Worker PDF: fino a 6 core / 6GB (per Docling pesante)

Orizzontale (replica servizi): - Worker ISTAT: scale fino a 4 repliche (docker-compose up -d
--scale worker-istat=4) - Worker PDF: NO scale (ML models memory-intensive)

Pagina 32 di 47 Guglielmo Celata

¢ GRANSA
é SASSO WP2: Realizzazione Infrastruttura Data-Lake MAPS

3.4 3.4 Networking e Sicurezza
3.4.1 Traefik Reverse Proxy

labels su servizt per routing
traefik.http.routers.{service}.rule=Host (" {service}.maps.deppsviluppo.org")
traefik.http.routers.{servicel}.tls=true
traefik.http.routers.{servicel}.tls.certresolver=letsencrypt

3.4.2 DNS Configuration (AWS Route53)

Script dns—setup.sh
aws routeb3 change-resource-record-sets \
--hosted-zone-id ${HOSTED_ZONE_ID} \
--change-batch '{
"Changes": [{
"Action": "CREATE",
"ResourceRecordSet": {

"Name": "prefect.maps.deppsviluppo.org",
llTypell : HAH s
"TTL": 300,

"ResourceRecords": [{"Value": "${SERVER_IP}"}]
}
H
} |

3.4.3 Firewall Rules

Porte esposte su op-linkurious

80/tcp - HTTP (redirect a HTTPS)

443/tcp - HTTPS (Traefik)

5432/tcp - PostgreSQL (solo da rete interna)

3.4.4 Secrets Management

.env file (NON in gtit)

POSTGRES_PASSWORD=$ (openssl rand -base64 32)
PREFECT_PASSWORD=$ (openssl rand -base64 32)
OPENMETADATA_PASSWORD=$ (openssl rand -base64 32)

3.5 3.5 Backup e Disaster Recovery

3.5.1 Strategy
PostgreSQL:

Script backup.sh

#1/bin/bash

TIMESTAMP=$(date +%Y%mid_%H%MAS)

docker exec maps-postgres pg_dump -U maps maps_db | \
gzip > /backup/maps_db_${TIMESTAMP}.sql.gz

Pagina 33 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

Retention: 7 daily, 4 weekly, 3 monthly
Shared Data (Bronze layer):

Rsync incrementale
rsync -avz --progress /data/bronze/ backup-server:/backup/bronze/

RPO/RTO: - Recovery Point Objective: 24h (backup giornaliero) - Recovery Time Objec-
tive: 4h (restore manuale)

[WIP] Questo capitolo sard completato con: - Diagrammi architetturali dettagliati - Security hard-
ening checklist - Monitoring stack (Prometheus, Grafana)- CI/CD pipeline

Prossimo capitolo: Specifiche Infrastruttura Hosting

Pagina 34 di 47 Guglielmo Celata

04-specifiche-hosting.md

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

4 Specifiche Infrastruttura Hosting

Deliverable D2.1.3: Specifiche Infrastruttura Hosting

4.1 4.1 Server Target: op-linkurious
4.1.1 Specifiche Hardware

Hostname: op-linkurious.openpolis.it

CPU: 8 cores
RAM: 31 GB
Disk: 621 GB

0S: Linux (Ubuntu/Debian)
Network: 1 Gbps

4.1.2 Servizi Esistenti

o Traefik reverse proxy (porta 80/443)
» Rete Docker: gw (gateway network)
e Dominio base: *.deppsviluppo.org

4.2 4.2 Requisiti Sistema

4.2.1 Software Prerequisites

Docker Engine
Docker version >= 24.0
Docker Compose version >= 2.20

Database Client
psql (PostgreSQL) >= 15

Uttlities
git, make, curl, wget, jq

4.2.2 Disk Layout

/root/maps-docker/ # Deployment root

+-- postgres/ # PostgreSQL init scripts
+-- prefect/ # Flows e configurazioni
+-- openmetadata/ # Metadata config

+-- shared-data/ # Bronze layer storage

| +-- bronze/ # Raw data

| +-- cache/ # Temporary cache

| +-- exports/ # Gold exports

+-- volumes/ # Docker volumes mount points
| +-- postgres-data/ # Database files

| +-- openmetadata-data/ # Metadata DB

+-- backup/ # Backup scripts e dump
+-- logs/ # Centralized logging

Pagina 35 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

4.2.3 Disk Space Allocation

Path Size Purpose
/root/maps-docker/shared1d@t&tdbronze/ Raw data files
/root/maps-docker/volumedfpo&igres-data/ PostgreSQL database
/root/maps-docker/volume£fopddmetadata-data/ Metadata catalog
/root/maps-docker/backuph0 GB Database backups (7 days retention)
TOTALE 320 GB Su 621 GB disponibili (52%)

4.3 4.3 Network Configuration

4.3.1 Porte e Routing

Servizio | Porta Interna | Dominio Esterno

Traefik | 80, 443 | maps.deppsviluppo.org
PostgreSQL | 5432 | do.linkurious.openpolis.it:5432
Prefect UI | 4200 | prefect.maps.deppsviluppo.org
OpenMetadata UI | 8585 | metadata.maps.deppsviluppo.org

4.3.2 DNS Records (Route53)

A records su deppsviluppo.org
prefect.maps.deppsviluppo.org -+ ${SERVER_IP}
metadata.maps.deppsviluppo.org -+ ${SERVER_IP}

PostgreS(UL gid esposto su
do.linkurious.openpolis.it -+ ${SERVER_IP}:5432

4.3.3 SSL/TLS

o Provider: Let’s Encrypt (via Traefik)
e Auto-renewal: Traefik gestisce automaticamente
o Certbot: NO necessario (Traefik integrato)

4.4 4.4 Deployment Procedure

4.4.1 Initial Setup

1. Preparazione ambiente
ssh root@op-linkurious
mkdir -p /root/maps-docker
cd /root/maps-docker

2. Clone repository (o copia deployment package)
git clone https://gitlab.com/depp/gst-maps.git /tmp/gst-maps
cp -r /tmp/gst-maps/deployment/*

3. Configurazione secrets
cp .env.example .env

Pagina 36 di 47 Guglielmo Celata

& GRAN SASSOTECH

WP2: Realizzazione Infrastruttura Data-Lake MAPS

nano .env # Modifica password

4. Deploy stack
bash deploy.sh

5. Verifica
bash status.sh

4.4.2 Deploy Script

#!/bin/bash

deploy.sh — Main deployment script

set -e

echo "=== MAPS Data Lake Deployment ==="

Pre-flight checks

echo "Checking prerequisites..."

command -v docker >/dev/null || { echo "Docker not found"; exit 1; }

command -v docker-compose >/dev/null || { echo "Docker Compose not found"; exit 1;

L)

Create directories

echo "Creating directory structure..."

mkdir -p shared-data/{bronze,c

mkdir -p volumes/{postgres-data,openmetadata-data}

mkdir -p backup logs

Initialize database

echo "Initializing PostgreSQL.
docker-compose up -d postgres
sleep 10

docker exec maps-postgres psql -U maps -d maps_db -f
< /docker-entrypoint-initdb.d/01-init-schemas.sql

Start remaining services
echo "Starting services..."
docker-compose up -d

Configure DNS
echo "Configuring DNS..."
bash dns-setup.sh

Health checks
echo "Running health checks...

bash status.sh

echo "=== Deployment complete

ache,exports}

Pagina 37 di 47

Guglielmo Celata

éGRAN SASSOTECH WP2: Realizzazione Infrastruttura Data-Lake MAPS

echo "Access services at:"

echo " - Prefect: https://prefect.maps.deppsviluppo.org"
echo " - OpenMetadata: https://metadata.maps.deppsviluppo.org"
echo " - PostgreSQL: do.linkurious.openpolis.it:5432"

4.5 4.5 Monitoring e Maintenance
4.5.1 Health Checks

#!/bin/bash

status.sh — Check service health

echo "=== MAPS Services Status ==="

Docker containers
docker ps —-filter '"name=maps-" --format "table

{{.Names}}\t{{.Status}}\t{{.Ports}}"

PostgreS(L
docker exec maps-postgres pg_isready -U maps —d maps_db

Disk usage
df -h /root/maps-docker/

Memory usage
free -h

Prefect workers
docker exec maps-prefect-server prefect work-pool 1ls
4.5.2 Logging

Centralized logging directory
/root/maps-docker/logs/

+-- postgres/ # PostgreS(L logs

+-- prefect/ # Prefect server logs

+-- workers/ # Worker pool logs

+-- openmetadata/ # OpenMetadata logs

View logs

docker logs -f maps-postgres # PostgreS(L

docker logs -f maps-prefect-server # Prefect
docker logs -f maps-worker-istat # Worker ISTAT
4.5.3 Backup Automation

Cron job per backup giornaliero
0 2 * * * /root/maps-docker/backup.sh >> /root/maps-docker/logs/backup.log 2>&1

Pagina 38 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

4.6 4.6 Security Hardening

4.6.1 Firewall Rules

ufw rules

ufw allow 80/tcp # HTTP (redirect HTTPS)
ufw allow 443/tcp # HTTPS (Traefik)

ufw allow 5432/tcp # PostgreSQL (gid esposto)
ufw enable

4.6.2 PostgreSQL Security

—-- Rewoke public permissions
REVOKE ALL ON SCHEMA public FROM PUBLIC;

-- Create read-only user for analytics

CREATE USER maps_readonly PASSWORD '${RO_PASSWORD}';

GRANT CONNECT ON DATABASE maps_db TO maps_readonly;

GRANT USAGE ON SCHEMA silver, gold TO maps_readonly;

GRANT SELECT ON ALL TABLES IN SCHEMA silver, gold TO maps_readonly;

4.6.3 Secrets Rotation

Rotate PostgreSQL password

docker exec maps-postgres psql -U postgres -c "ALTER USER maps PASSWORD
< "${NEW_PASSWORD}';"

Update .env and restart services

docker-compose restart

4.7 4.7 Disaster Recovery Plan

4.7.1 Backup Strategy

1. Daily: Full PostgreSQL dump (retention: 7 days)
2. Weekly: Bronze layer snapshot (retention: 4 weeks)
3. Monthly: Complete system backup (retention: 3 months)

4.7.2 Recovery Procedure

1. Stop services
docker-compose down

2. Restore PostgreS{L
gunzip < /backup/maps_db_20260315.sql.gz | \
docker exec -i maps-postgres psql -U maps -d maps_db

3. Restore Bronze data
rsync -avz backup-server:/backup/bronze/ /root/maps-docker/shared-data/bronze/

4. Restart serwvices
docker-compose up -d

Pagina 39 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

5. Verify
bash status.sh

[WIP] Questo capitolo sara completato con: - Monitoring dashboards (Grafana) - Alerting rules
(Prometheus) - Runbook operativi - Incident response procedures

Prossimo capitolo: Pipeline ETL

Pagina 40 di 47 Guglielmo Celata

05-pipeline-etl.md

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

5 Pipeline ETL e Script Documentati

Deliverable D2.2: Script ETL (Python/SQL) documentati e testati
[TODO] Questo capitolo sard completato durante la fase di sviluppo (Task 2.2, M10-M12)

5.1 5.1 Overview Pipeline ETL
5.1.1 Architettura Prefect Multi-Worker-Pools

Le pipeline ETL sono organizzate per worker pool in base ai requisiti computazionali:

prefect/flows/
+-- istat/ # istat-pool (lightweight, 2 workers)
| +-- Dockerfile
| +-- requirements.txt
| +-— popolazione_flow.py
| +-- pendolarismo_flow.py
+-- pdf-extraction/ # pdf-pool (heavyweight, 1 worker)
| +-- Dockerfile
| +-- requirements.txt
| +-- tabacchi_adm_flow.py
+-- analytics/ # analytics-pool (medium, 1 worker)
+-- Dockerfile
+-- requirements.txt
+-—- spatial_aggregation_flow.py

5.1.2 Pattern Comune Pipeline

Tutte le pipeline seguono il pattern sequenziale:

01__ingestion: Download/scrape — Bronze layer
02__transform: Parse — Silver layer (EAV)
03__data_ quality: Great Expectations validation
04__metadata: Update OpenMetadata catalog

WD =

5.2 5.2 Pipeline ISTAT Popolazione

5.2.1 Scopo

Ingestione dati popolazione residente ISTAT con granularitd comunale (2010-2025).

5.2.2 Fonte Dati

o URL: https://demo.istat.it /popres/

e Formato: CSV

e Frequenza: Annuale

e Dimensione: ~8.000 righe x 50 colonne

5.2.3 Codice Sorgente
[TODO] Link al codice in deployment/prefect/flows/istat/popolazione_flow.py

Pagina 41 di 47 Guglielmo Celata

¢ GRANSA
é SASSO WP2: Realizzazione Infrastruttura Data-Lake MAPS

Skeleton struttura

from prefect import flow, task

from prefect.task_runners import ConcurrentTaskRunner
import pandas as pd

from pathlib import Path

Otask(retries=3, retry_delay_seconds=60)

def download_popolazione(anno: int, output_path: Path) -> Path:
"""Download CSV popolazione ISTAT per anno specificato”"""
Implementation. ..
pass

O@task

def load_to_silver(csv_path: Path, anno: int) -> int:
"""Carica dati in silver.comuni_attributi_eav"""
Implementation. ..
pass

Otask

def validate_data(anno: int) -> dict:
"""Yalida completeness e accuracy con Great Expectations
Implementation. ..
pass

nmnn

0flow(name="istat-popolazione", log_prints=True)
def popolazione_flow(anno: int = 2025):
"""EFlow principale ingestion popolazione ISTAT"""
bronze_path = download_popolazione(anno, Path(f"/data/bronze/istat/{anno}"))
records = load_to_silver(bronze_path, anno)
validation = validate_data(anno)
return {"records": records, "validation": validation}

5.2.4 Deployment

Butld worker image
cd deployment/prefect/flows/istat/
docker build -t maps/worker-istat:latest

Deploy flow

prefect deployment build popolazione_flow.py:popolazione_flow \
—-name "ISTAT Popolazione ${ANNO}" \
--pool istat-pool \
--cron "0 2 1 * x" # (Ogni 1° del mese alle 24M

prefect deployment apply popolazione_flow-deployment.yaml

5.3 5.3 Pipeline GTFS Trasporto Pubblico
[TODO] Documentazione pipeline GTFS

Pagina 42 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

5.4 5.4 Pipeline PDF Extraction (Tabacchi ADM)
[TODO] Documentazione pipeline Docling

5.5 5.5 Data Quality Framework
5.5.1 Great Expectations Suite
[TODO] Esempio suite validazione

expectations/istat_popolazione.py
import great_expectations as gx

suite = gx.core.ExpectationSuite(name="istat_popolazione")

Completeness
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_not_be_null",
kwargs={"column": "codice_istat"}

Accuracy
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_column_values_to_match_regex",
kwargs={
"column": "codice_istat",
"regex": r""\d{6}$" # 6 cifre

Timeliness
suite.add_expectation(
gx.core.ExpectationConfiguration(
expectation_type="expect_table_row_count_to_be_between",
kwargs={
"min_value": 7500, # ~95J comuni (8000 z 0.95)
"max_value": 8500

5.6 5.6 Monitoring e Alerting
5.6.1 Prefect Dashboard

o URL: https://prefect.maps.deppsviluppo.org
e Metrics: Flow runs, task duration, failure rate

Pagina 43 di 47 Guglielmo Celata

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

o Alerting: Email/Slack su failure

5.6.2 Logging

Tutti i log sono centralizzati in /root/maps-docker/logs/workers/.

[WIP] Questo capitolo sara completato con: - Documentazione completa di tutte le pipeline priori-
tarie - Unit test per ogni task - Integration test end-to-end - Performance benchmarks

Prossimo capitolo: Validazione Pipeline ETL

Pagina 44 di 47 Guglielmo Celata

06-validazione-etl.md

@ GRAN SASSO

N\

WP2: Realizzazione Infrastruttura Data-Lake MAPS

6 Report di Validazione Pipeline ETL

Deliverable D2.3: Report di Validazione Pipeline ETL

[TODO] Questo capitolo sarda completato dopo l'implementazione e testing (Task 2.3, M10-M12)

6.1 6.1 Metodologia di Validazione

6.1.1 Criteri di Accettazione

Basandoci sull’Acceptance Matrix definita per il progetto, le pipeline ETL devono soddisfare:

6.1.1.1 Completeness

o Target: >=95% comuni italiani coperti per ogni dataset
e Metrica: (comuni_con_dati / totale_comuni) x 100

e Threshold: FAIL se <95%, WARNING se 95-98%, PASS se >=98%

6.1.1.2 Accuracy

o Target: >=99.9% record con codice ISTAT valido
e Metrica: (record_validi / totale_record) x 100
o Validazione: Confronto con reference dataset (confini ISTAT ufficiali)

6.1.1.3 Timeliness

e Target: Ingestion completata entro finestre temporali definite
e Metrica: tempo_esecuzione_pipeline
e Threshold: <24h per pipeline prioritarie

6.1.1.4 Lineage

e Target: Tracciabilita completa fonte — Bronze — Silver — Gold
e Metrica: % record con metadata provenienza completi
o Threshold: 100%

6.1.2 Test Suite

tests/test_popolazione_pipeline.py
import pytest
from prefect.testing.utilities import prefect_test_harmess

def test_popolazione_flow_completeness():
"niersfica copertura comunale >=957"""
result = popolazione_flow(anno=2024)
assert result['validation']['completeness'] >= 0.95

def test_popolazione_flow_accuracy():
"niersfica validitd codici ISTAT >=99.95"""
result = popolazione_flow(anno=2024)
assert result['validation']['accuracy'] >= 0.999

Pagina 45 di 47

Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

def test_popolazione_flow_timeliness():
"""Yerifica esecuzione <1h"""
import time
start = time.time()
popolazione_flow(anno=2024)
duration = time.time() - start
assert duration < 3600 # 1 ora

6.2 6.2 Risultati Test Pipeline ISTAT Popolazione
[TODO] Tabella risultati reali dopo implementazione

Metrica Target Risultato Status
Completeness >=95% TBD
Accuracy >=99.9% TBD
Timeliness <24h TBD
Lineage 100% TBD

6.3 6.3 Risultati Test Pipeline GTFS
[TODO] Dopo implementazione

6.4 6.4 Risultati Test Pipeline PDF Extraction
[TODO] Dopo implementazione

6.5 6.5 Performance Benchmarks

6.5.1 Throughput
[TODO] Misurazioni reali

Pipeline Record/sec Volume Totale Tempo Esecuzione
ISTAT Popolazione TBD ~8.000 righe TBD
GTEFS Italia TBD ~500 MB TBD
PDF Tabacchi TBD ~20.000 record TBD

6.5.2 Resource Utilization
[TODO] Metriche da Prometheus/Grafana

e CPU usage: TBD

e Memory usage: TBD

» Disk I/O: TBD

e Network bandwidth: TBD

Pagina 46 di 47 Guglielmo Celata

@ GRAN SASSO o
WP2: Realizzazione Infrastruttura Data-Lake MAPS

6.6 6.6 Issue Identificati e Risoluzioni

[TODO] Log degli issue trovati durante testing

6.6.1 Issue #1: Fusioni Comunali Non Gestite

Descrizione: Pipeline falliva su comuni fusi nel periodo 2010-2025 Soluzione: Implementato
lookup storico in silver.fusioni_comunali Status: [YES] Risolto

6.6.2 Issue #2: Timeout su Scraping ADM

Descrizione: Timeout dopo 10 minuti su pagine con molte province Soluzione: Aumentato time-
out a 30 minuti, implementato retry con backoff Status: [YES] Risolto

[Continuare con altri issue...|

6.7 6.7 Raccomandazioni

6.7.1 Short-term (1-2 mesi)

1. Implementare caching per reduce API calls esterne
2. Ottimizzare query SQL su Silver layer (indici mancanti)
3. Aggiungere alerting su Slack per pipeline failures

6.7.2 Medium-term (3-6 mesi)

1. Migrare da CSV a Parquet per Bronze layer (compressione)
2. Implementare incremental loading per dataset grandi
3. Setup dashboard Grafana per monitoring real-time

6.7.3 Long-term (6-12 mesi)

1. Valutare DuckDB per analytics queries (federation da PostgreSQL)
2. Implementare data versioning con DVC
3. Esplorare ML per anomaly detection su data quality

6.8 6.8 Conclusioni
[TODO] Sintesi finale dopo completamento testing
Le pipeline ETL del Data Lake MAPS hanno superato i criteri di accettazione definiti, dimostrando:

» [YES] Robustezza: Gestione errori e retry automatici

o [YES] Performance: Throughput adeguato per volumetrie target
o [YES] Qualita: Completeness e accuracy oltre le soglie minime

« [YES] Tracciabilita: Lineage completo Bronze— Silver— Gold

Stato Deliverable: In Progress (Task 2.3, M10-M12)
Questo documento sard finalizzato entro 31/05/2026

Pagina 47 di 47 Guglielmo Celata

	Contesto e Requisiti
	1.1 Introduzione al Progetto MAPS
	Obiettivi del Progetto
	Approccio Innovativo

	1.2 Requisiti del Data Lake
	Requisiti Funzionali
	Requisiti Non Funzionali

	1.3 Dati Critici per MVP (Fase 1a)
	1.4 Vincoli Architetturali
	Vincolo V1: Self-Hosted Open Source
	Vincolo V2: Adeguatezza di Scala
	Vincolo V3: Standard Territoriali
	Vincolo V4: Compliance FAIR

	1.5 Sfide Specifiche
	Sfida S1: Assenza Geolocalizzazione Puntuale
	Sfida S2: Evoluzione Confini Amministrativi
	Sfida S3: Gap Temporali COVID
	Sfida S4: Eterogeneità Formati

	1.6 Obiettivi del WP2
	1.7 Output Attesi (Deliverable)

	Architettura Tecnica Data-Lake
	2.1 Pattern Medallion: Bronze → Silver → Gold
	2.1.1 Visione d’Insieme
	2.1.2 Rationale della Scelta
	2.1.3 Data Flow Completo
	2.1.4 Bronze Layer: Raw Data Archive
	2.1.5 Silver Layer: Cleaned & Validated Data
	2.1.6 Gold Layer: Business-Ready Analytics
	2.1.7 Presentazione Interattiva
	2.1.8 EAV vs Schema Tradizionale: Comparazione

	2.2 Stack Tecnologico
	2.2.1 Componenti Principali
	2.2.2 Rationale delle Scelte Tecnologiche

	2.3 Architettura di Deployment
	2.3.1 Deployment su Server op-linkurious
	2.3.2 Data Flow Completo
	2.3.3 Security Architecture

	2.4 Data Lineage e Governance
	2.4.1 Lineage Tracking con OpenMetadata
	2.4.2 Data Quality Metrics

	2.5 Best Practices Implementate
	2.5.1 Idempotenza
	2.5.2 Incremental Loading
	2.5.3 Schema Evolution

	2.6 Metriche e Monitoraggio
	2.6.1 KPIs Architettura Medallion
	2.6.2 Monitoring Dashboard

	Solution Design Architettura Cloud
	3.1 Approccio: Self-Hosted su Infrastruttura Esistente
	Contesto Deployment
	Rationale Self-Hosted

	3.2 Container Architecture
	Docker Compose Multi-Service

	3.3 Resource Allocation
	Dimensionamento Servizi
	Scalabilità Verticale/Orizzontale

	3.4 Networking e Sicurezza
	Traefik Reverse Proxy
	DNS Configuration (AWS Route53)
	Firewall Rules
	Secrets Management

	3.5 Backup e Disaster Recovery
	Strategy

	Specifiche Infrastruttura Hosting
	4.1 Server Target: op-linkurious
	Specifiche Hardware
	Servizi Esistenti

	4.2 Requisiti Sistema
	Software Prerequisites
	Disk Layout
	Disk Space Allocation

	4.3 Network Configuration
	Porte e Routing
	DNS Records (Route53)
	SSL/TLS

	4.4 Deployment Procedure
	Initial Setup
	Deploy Script

	4.5 Monitoring e Maintenance
	Health Checks
	Logging
	Backup Automation

	4.6 Security Hardening
	Firewall Rules
	PostgreSQL Security
	Secrets Rotation

	4.7 Disaster Recovery Plan
	Backup Strategy
	Recovery Procedure

	Pipeline ETL e Script Documentati
	5.1 Overview Pipeline ETL
	Architettura Prefect Multi-Worker-Pools
	Pattern Comune Pipeline

	5.2 Pipeline ISTAT Popolazione
	Scopo
	Fonte Dati
	Codice Sorgente
	Deployment

	5.3 Pipeline GTFS Trasporto Pubblico
	5.4 Pipeline PDF Extraction (Tabacchi ADM)
	5.5 Data Quality Framework
	Great Expectations Suite

	5.6 Monitoring e Alerting
	Prefect Dashboard
	Logging

	Report di Validazione Pipeline ETL
	6.1 Metodologia di Validazione
	Criteri di Accettazione
	Test Suite

	6.2 Risultati Test Pipeline ISTAT Popolazione
	6.3 Risultati Test Pipeline GTFS
	6.4 Risultati Test Pipeline PDF Extraction
	6.5 Performance Benchmarks
	Throughput
	Resource Utilization

	6.6 Issue Identificati e Risoluzioni
	Issue #1: Fusioni Comunali Non Gestite
	Issue #2: Timeout su Scraping ADM

	6.7 Raccomandazioni
	Short-term (1-2 mesi)
	Medium-term (3-6 mesi)
	Long-term (6-12 mesi)

	6.8 Conclusioni

